Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survival Niche for Cancer Cells

06.06.2011
Cancer cells do not grow equally well everywhere in the body. Often, they first create the conditions in which they can grow. Many years ago researchers discovered that solid tumors attract blood vessels to ensure their supply of nutrients by secreting specific factors.

Now the immunologist Dr. Uta Höpken (Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch in the Helmholtz Association) and the hematologist Dr. Armin Rehm (Charité – Virchow-Klinikum, Berlin, MDC) have shown for the first time that specific forms of lymphoma also create their own survival niche (Blood, doi:10.1182/blood-2010-11-321265)*.

Lymphoma is the term used to describe a group of cancers of the lymphatic system. Lymphoma cells are abnormal immune cells (B cells or T cells), a specific group of white blood cells (lymphocytes). Using a mouse model, Dr. Rehm and Dr. Höpken demonstrated for the first time that the dissemination of lymphoma cells and their accumulation in the lymph nodes or spleen is dependent on specific signaling or growth substances, the chemokines CCL19 or CCL21.

Chemokines normally attract immune cells to a site of infection or inflammation. As former immune cells, lymphoma cells have special antennas (receptors) on their cell surface to which these signaling substances bind. If the lymphoma cells receive the signal via their CCR7 receptor, they migrate into the lymph nodes and into specific areas within the spleen.

Paradox
CCR7 not only mediates the migration of the lymphoma cells, it is also apparently crucial for their development and survival. As the two researchers showed in a next step, the lymphoma cells proliferate in the lymph nodes or in the spleen very slowly if this receptor is absent.

However, with the aid of CCR7 the cancer cells find their survival niche in the T-cell zones of the lymph nodes and the spleen. In these zones T cells are usually made fit for defense. “It is paradoxical that lymphoma cells as former B cells find an absolutely optimal microenvironment for their growth in these T-cell zones,” Dr. Höpken said.

There the lymphoma cells crosstalk with stromal cells (connective tissue cells), which subsequently secrete increased quantities of the chemokines CCL19/CCL21. The CCR7 receptor not only mediates the homing of additional lymphoma cells to the lymph nodes or spleen, but also stimulates their proliferation.

On the other hand, the lymphoma cells themselves secrete a signaling substance (lymphotoxin) which induces the stromal cells to secrete more and more chemokines. In this way the lymphoma cells ensure their survival. This may also explain why some lymphomas are so aggressive.

In mice the researchers succeeded in breaking this vicious cycle. Using an active substance that blocks the binding of the lymphotoxins to the stromal cells, they were able to stop tumor growth. “In the future,” Dr. Rehm said, “it may be that therapeutic strategies will not target the lymphoma cells directly, but rather the connective tissue so vital for their survival.”

*Cooperative function of CCR7 and lymphotoxin in the formation of a lymphoma-permissive niche within murine secondary lymphoid organs

Armin Rehm1,2, Angela Mensen1, Kristina Schradi3, Kerstin Gerlach1, Stefanie Wittstock1, Susann Winter3,Gilbert Büchner3, Bernd Dörken1,2, Martin Lipp3, and Uta E. Höpken3

1Max-Delbrück-Center for Molecular Medicine, MDC, Department of Hematology, Oncology and Tumorimmunology, 13125 Berlin, Germany
2Charité- Universitätsmedizin Berlin, Department of Hematology and Oncology, Campus Virchow-Klinikum, 13353 Berlin, Germany
3Max-Delbrück-Center for Molecular Medicine, MDC, Department of Tumor Genetics and Immunogenetics; 13125 Berlin, Germany

Corresponding author: Uta E. Höpken or Armin Rehm, Max-Delbrück-Center for Molecular Medicine, MDC, 13125 Berlin, Germany, e-mail: uhoepken@mdc-berlin.de; phone : +49-30-94063330; fax: +49-30-94063390; email: arehm@mdc-berlin.de; phone : +49-30-94063229; fax: +49-30-94063884

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>