Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survival mode that protects cells when oxygen is low also slows aging

20.04.2009
Longer life is accompanied by fewer degenerative diseases

A biochemical pathway that helps keep cells alive when oxygen is low also plays a role in longevity and resistance against some diseases of old age, according to a report to be published April 16 in the journal Science.

A cell's protective reaction to a drop in oxygen is called the hypoxic response. Researchers at the University of Washington (UW) have found that nematode worms live longer if their genetic make-up permits their cells to turn on the hypoxic response under normal oxygen conditions.

Not only do these worms live longer, the researchers noted, their cells are relatively free from the toxic proteins that accumulate and clump together as an animal ages.

Dr. Matt Kaeberlein, UW assistant professor of pathology and the senior author on the study, said that defining cellular mechanisms that prevent accumulation of these proteins may point to new therapeutic targets for devastating diseases that often accompany old age in people. Toxic protein aggregations, he explained, are seen in the brain cells of those with Alzheimer's disease, Huntington's disease, and several other degenerative conditions that afflict the elderly.

The co-lead authors, Dr. Ranjana Mehta and Dr. Katy Steinkraus, uncovered the life-extending role of the hypoxic response while studying the mechanism by which dietary restriction slows aging in nematodes. Dietary restriction has been shown to increase life span in many different organisms, including worms, flies and mice. Kaeberlein's group had previously found that dietary restriction also protects against toxic protein aggregation in nematode models of Huntington's and Alzheimer's diseases. To their surprise, however, genetic experiments mapped the hypoxic response to a previously unknown longevity pathway, different from dietary restriction.

"The research findings suggest that the hypoxic response promotes longevity and reduces the accumulation of toxic proteins by a mechanism that is distinct from both dietary restriction and insulin-like signaling. It appears to be an alternative pathway," Kaeberlein said. "However, we don't know if future studies might reveal that all of these different genetic pathways converge somewhere down the line into a common mechanism for delaying the effects of age."

The key factor that controls the hypoxic response is called HIF. HIF is regulated by another protein called VHL-1, which tags HIF to be destroyed by a cellular machine called the proteasome. Destruction of HIF by VHL-1 keeps the hypoxic response "off" when oxygen is present. The UW researchers bred worms that could not produce VHL-1, leading to persistence of HIF even in the presence of high oxygen levels. They found that these worms, which were able to turn on the hypoxic response under normal oxygen conditions, lived about 30 percent longer than worms whose cells made VHL-1.

They also found that animals lacking VHL-1 were resistant to the toxic proteins known to cause Alzheimer's and Huntington's diseases, and that their cells accumulated less of an age-pigment called lipofuscin. Lipofuscin is thought to be one indicator of an animal's health during aging. According to Kaeberlein, "These observations may suggest that the hypoxic response not only increases life span, but also lengthens health span and protects against the molecular processes that lead to neurodegenerative diseases in people." Health span refers to the period of an organism's life that is relatively free of disease.

The authors note that the hypoxic response, including HIF and VHL-1, is very well conserved in organisms from nematodes to humans, raising the possibility that modulating HIF activity may be useful for treating some age-associated diseases, and perhaps even slowing aging, in people. Kaeberlein cautions, however, that "mutation of VHL-1 is associated with a variety of tumors, and any therapies targeted toward activation of HIF would most likely need to be specific for cells that are not rapidly dividing, such as brain cells or muscle cells."

"What we're focused on now," says Mehta, "is figuring out how HIF is protecting the animals from aging." In both worms and people, HIF regulates the activity of several factors involved in growth and resistance to stress. "One or more of these factors must be the key."

Kaeberlein agrees. "This is a completely new pathway for aging and age-associated disease. If we can understand at a very detailed level how HIF is slowing aging, we may be able to use that information to develop effective therapies for treating age-associated diseases in people."

The researchers on the study entitled "Proteasomal Regulation of the Hypoxic Response Modulates Aging in C. elegans," in addition to Kaeberlein, Mehta, and Steinkraus, were George Sutphin, Fresnida J. Ramos, Lara S. Shmieh, Alexander Huh, Christina Davis, and Devon Chandler-Brown, all from the UW Department of Pathology or the UW Molecular and Cellular Biology Program.

The research was supported by the Alzheimer's Association, the Glenn Foundation, the American Federation for Aging Research, the National Institutes of Health, and the Hereditary Disease Foundation. Kaeberlein is an Ellison Medical Foundation New Scholar in Aging.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>