Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survival Artists in the Antarctic

12.01.2017

Researchers study the ways in which moss can survive in hostile environments

In order to improve our understanding of the impact climate change has on plant life in the Antarctic, the Rector of the University of Freiburg/Germany, Prof. Dr. Hans-Jochen Schiewer, and the President of the Korea Polar Research Institute KOPRI, Dr. Ho-Il Yoon, have just signed a co-operation agreement on moss research.


Photo: KOPRI

Biologists Prof. Dr. Ralf Reski from the University of Freiburg/Germany and Dr. Hyoungseok Lee from the Korea Polar Research Institute KOPRI/South Korea will join forces to decipher the genome of an Antarctic strain of the moss Sanionia uncinata and compare it to the genome of the model moss Physcomitrella patens, which cannot grow in Antarctica.

The project will be funded by KOPRI’s “Polar Genomes 101 Project”. “We are excited about this new opportunity and expect new insights into plant adaptation to harsh environmental conditions,” says Reski.

Best known for its penguins, Antarctica is also home to about 100 moss species, which form the dominant plant life on this continent with its freezing temperatures, poor soil quality, lack of moisture and little sunlight. So far it is not known how plants can survive such harsh conditions and how man-made global warming will affect plant life in the Antarctic.

“We will search for as yet unknown signalling mechanisms in the moss that have evolved over millions of years to make life in remote and hostile places possible.”

Ralf Reski holds the Chair of Plant Biotechnology at the Faculty of Biology of the University of Freiburg/Germany. He is a founding principal investigator of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies and has developed the moss Physcomitrella from scratch to a model organism for basic biology and plant biotechnology over the last three decades.

www.plant-biotech.net 

Contact:
Professor Ralf Reski
Plant Biotechnology
Faculty of Biology
University of Freiburg
Germany
Phone: +49 761 203 6968
E-Mail: pbt@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/pm.2017-01-12.4-en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>