Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New survey of DNA alterations could aid search for cancer genes

30.09.2013
Scanning the DNA of nearly 5,000 tumor samples, a team led by scientists at Dana-Farber Cancer Institute and the Broad Institute has identified 140 regions of scrambled genetic code believed to contain many undiscovered cancer genes.

The researchers said the mapping of the abnormal regions gives cancer scientists a starting point from which to search for as-yet undiscovered oncogenes and broken tumor-suppressor genes, which allow cells to divide and grow uncontrollably.

Published in the October issue of Nature Genetics, the results are part of an ongoing international research effort to define the landscape of DNA mutations and other genetic changes that fuel the development of cancer.

The authors said it is the largest analysis to date of the role of DNA "copy number alterations" across several types of cancer. Normal cells carry two copies of the 20,000 genes that make up the genome. The genomes of cancer cells typically are riddled with areas where genetic sequences are duplicated or deleted; in fact, copy number alterations affect more of the genome than any other DNA abnormality in cancer. The study's goal was to identify patterns of copy number alterations and determine how they promote cancer.

In the survey of 4,934 cancers of 11 types, "we found that cancers often undergo doubling of the entire genomes, followed by large numbers of smaller copy number alteration events," said Rameen Beroukhim, MD, PhD, assistant professor of Medicine at Dana-Farber and an associate member of the Broad Institute. "We also saw a propensity of copy number changes to occur at telomeres [the tips of chromosomes] and they exhibit features indicating they arise from different mechanisms than copy number changes of regions within chromosomes."

Beroukhim is co-senior author of the report along with Matthew Meyerson, MD, PhD, of Dana-Farber and the Broad, and Gad Getz, PhD, of Massachusetts General Hospital and the Broad.

The analysis also revealed 70 regions of the cancer genome that undergo duplications –also known as amplifications – more often than would be expected by chance and 70 regions that contain deletions more often than would be expected by chance. "We expect these 140 regions to contain a number of as-yet unknown oncogenes and tumor suppressor genes," Beroukhim said.

On average, these 140 regions included three to four genes. However, only 35 of the regions contained known oncogenes or tumor suppressor genes previously linked to cancer. "So there is a lot left to discover in the cancer genome," Beroukhim said. "These regions provide the research community a starting point to evaluate possible novel oncogenes and tumor suppressor genes." The results have been made available in a publicly accessible website, http://www.broadinstitute.org/tcga.

He added that further study of the copy number variation database generated by the researchers "will help us understand better how cancers arise and what are the genes involved. And when we understand that, we can develop diagnostics and therapeutics that counteract those genes."

The research used data compiled through The Cancer Genome Atlas Pan-Cancer Initiative, part of The Cancer Genome Atlas Project led by the National Cancer Institute and the National Human Genome Research Institute.

Co-first authors of the report are Travis Zack and Steven Schumacher in the Beroukhim lab at Dana-Farber.

The research was funded in part from grants from the National Institutes of Health (U24CA143867, U24CA143845, U54CA143798, U54HG003067, and U24CA143882), the V Foundation, and the Pediatric Low-Grade Astrocytoma Foundation.

—Written by Richard Saltus

About Dana-Farber Cancer Institute

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center, designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Boston Children's Hospital as Dana-Farber/Boston Children's Cancer and Blood Disorders Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Facebook and on Twitter.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.havard.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>