Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising Species Shake-up Discovered

14.05.2014

The diversity of the world’s life forms — from corals to carnivores — is under assault. Decades of scientific studies document the fraying of ecosystems and a grim tally of species extinctions due to destroyed habitat, pollution, climate change, invasives and overharvesting.

Which makes Nick Gotelli’s new report in the journal Science rather surprising.


With survey data from every continent and climate type, a new study found species compositions changing — but not systematic losses of biodiversity — around the globe. Each dot represents a site included in the analysis. (Image courtesy of Science magazine)

Gotelli, a professor in UVM’s biology department, with colleagues from Saint Andrews University, Scotland, and the University of Maine, re-examined data from one hundred long-term monitoring studies done around the world — polar regions to the tropics, in the oceans and on land. They discovered that the number of species in many of these places has not changed much — or has actually increased.

Now wait a minute. A global extinction crisis should show up in declining levels of local biodiversity, right? That’s not what the scientists found. Instead they discovered that, on average, the number of species recorded remained the same over time. Fifty-nine of the one hundred biological communities showed an increase in species richness and 41 a decrease. In all the studies, the rate of change was modest.

But the researchers did discover something changing rapidly: which species were living in the places being studied. Almost 80 percent of the communities the team examined showed substantial changes in species composition, averaging about 10 percent change per decade — significantly higher than the rate of change predicted by models.

In other words, this new report shows that a huge turnover of species in habitats around the globe is under way, resulting in the creation of novel biological communities. “Right under our noses, in the same place that a team might have looked a decade earlier, or even just a year earlier, a new assemblage of plants and animals may be taking hold,” Gotelli says.

Jellyfish world

The causes of this shift are not yet fully clear, but the implications for conservation and policy could be significant. Historically, conservation science and planning has focused on protecting endangered species more than on shifts in which plants and animals are assembled together. “A main policy application of this work is that we're going to need to focus as much on the identity of species as on the number of species,” Gotelli says. “The number of species in a place may not be our best scorecard for environmental change.”

For example, the scientists write that disturbed coral reefs can be replaced by a group of species dominated by algae. This replacement might keep the species count the same, but not necessarily provide the fisheries, tourism (“algae diving” doesn’t have quite the same appeal as “reef diving”) or coastal protections that the original coral reef did.

“In the oceans we no longer have many anchovies, but we seem to have an awful lot of jellyfish,” says Gotelli. “Those kinds of changes are not going to be seen by just counting the number of species that are present.”

Almost unrecognizable

The new research, led by Maria Dornelas at Saint Andrews University in Scotland, carefully looked for previous studies that had tracked and tallied species over many years. The team selected 100 that contained six million observations of more than 35,000 different species — including datasets that go back to 1874 and many over the last 40 years. Given widespread observation of habitat change and individual species declines — and knowing that extinction rates are many times higher than normal — the scientists predicted a drop, over time, in the number of species observed in most of these studies.

Why they didn’t find this drop could be driven by many forces. One is related to what science writer David Quammen semi-famously termed our “planet of weeds.” In other words, invasive species or successful colonists or weedy generalists — think kudzu and rats — may be spreading into new places, keeping the local species tally up, even as the planet’s overall biodiversity is degraded.

“We move species around,” Gotelli says. “There is a huge ant diversity in Florida, and about 30 percent of the ant species are non-natives. They have been accidentally introduced, mostly from the Old World tropics, and they are now a part of the local assemblage. So you can have increased diversity in local communities because of global homogenization.”

And sampling issues may conceal important realities: some species may have become so rare — think white rhinos — that they’re highly unlikely to be found in a general species survey and so don’t show in the initial results nor disappear in later ones. 

Range shifts associated with climate change could be at work, too, quickly pushing species into new terrain. On May 6, the White House released its National Climate Assessment noting that, as a result of human-caused warming, “species, including many iconic species, may disappear from regions where they have been prevalent or become extinct, altering some regions so much that their mix of plant and animal life will become almost unrecognizable.”

This study in Science, published on April 18, underlines this emerging reality, giving it a new and worrisome precision and leading Nick Gotelli and his co-authors to conclude that there “is need to expand the focus of research and planning from biodiversity loss to biodiversity change.”

Joshua Brown | Eurek Alert!
Further information:
http://www.uvm.edu/~uvmpr/?Page=news&storyID=18473

Further reports about: Science composition diversity long-term observations oceans sampling species tropics

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>