Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising Species Shake-up Discovered

14.05.2014

The diversity of the world’s life forms — from corals to carnivores — is under assault. Decades of scientific studies document the fraying of ecosystems and a grim tally of species extinctions due to destroyed habitat, pollution, climate change, invasives and overharvesting.

Which makes Nick Gotelli’s new report in the journal Science rather surprising.


With survey data from every continent and climate type, a new study found species compositions changing — but not systematic losses of biodiversity — around the globe. Each dot represents a site included in the analysis. (Image courtesy of Science magazine)

Gotelli, a professor in UVM’s biology department, with colleagues from Saint Andrews University, Scotland, and the University of Maine, re-examined data from one hundred long-term monitoring studies done around the world — polar regions to the tropics, in the oceans and on land. They discovered that the number of species in many of these places has not changed much — or has actually increased.

Now wait a minute. A global extinction crisis should show up in declining levels of local biodiversity, right? That’s not what the scientists found. Instead they discovered that, on average, the number of species recorded remained the same over time. Fifty-nine of the one hundred biological communities showed an increase in species richness and 41 a decrease. In all the studies, the rate of change was modest.

But the researchers did discover something changing rapidly: which species were living in the places being studied. Almost 80 percent of the communities the team examined showed substantial changes in species composition, averaging about 10 percent change per decade — significantly higher than the rate of change predicted by models.

In other words, this new report shows that a huge turnover of species in habitats around the globe is under way, resulting in the creation of novel biological communities. “Right under our noses, in the same place that a team might have looked a decade earlier, or even just a year earlier, a new assemblage of plants and animals may be taking hold,” Gotelli says.

Jellyfish world

The causes of this shift are not yet fully clear, but the implications for conservation and policy could be significant. Historically, conservation science and planning has focused on protecting endangered species more than on shifts in which plants and animals are assembled together. “A main policy application of this work is that we're going to need to focus as much on the identity of species as on the number of species,” Gotelli says. “The number of species in a place may not be our best scorecard for environmental change.”

For example, the scientists write that disturbed coral reefs can be replaced by a group of species dominated by algae. This replacement might keep the species count the same, but not necessarily provide the fisheries, tourism (“algae diving” doesn’t have quite the same appeal as “reef diving”) or coastal protections that the original coral reef did.

“In the oceans we no longer have many anchovies, but we seem to have an awful lot of jellyfish,” says Gotelli. “Those kinds of changes are not going to be seen by just counting the number of species that are present.”

Almost unrecognizable

The new research, led by Maria Dornelas at Saint Andrews University in Scotland, carefully looked for previous studies that had tracked and tallied species over many years. The team selected 100 that contained six million observations of more than 35,000 different species — including datasets that go back to 1874 and many over the last 40 years. Given widespread observation of habitat change and individual species declines — and knowing that extinction rates are many times higher than normal — the scientists predicted a drop, over time, in the number of species observed in most of these studies.

Why they didn’t find this drop could be driven by many forces. One is related to what science writer David Quammen semi-famously termed our “planet of weeds.” In other words, invasive species or successful colonists or weedy generalists — think kudzu and rats — may be spreading into new places, keeping the local species tally up, even as the planet’s overall biodiversity is degraded.

“We move species around,” Gotelli says. “There is a huge ant diversity in Florida, and about 30 percent of the ant species are non-natives. They have been accidentally introduced, mostly from the Old World tropics, and they are now a part of the local assemblage. So you can have increased diversity in local communities because of global homogenization.”

And sampling issues may conceal important realities: some species may have become so rare — think white rhinos — that they’re highly unlikely to be found in a general species survey and so don’t show in the initial results nor disappear in later ones. 

Range shifts associated with climate change could be at work, too, quickly pushing species into new terrain. On May 6, the White House released its National Climate Assessment noting that, as a result of human-caused warming, “species, including many iconic species, may disappear from regions where they have been prevalent or become extinct, altering some regions so much that their mix of plant and animal life will become almost unrecognizable.”

This study in Science, published on April 18, underlines this emerging reality, giving it a new and worrisome precision and leading Nick Gotelli and his co-authors to conclude that there “is need to expand the focus of research and planning from biodiversity loss to biodiversity change.”

Joshua Brown | Eurek Alert!
Further information:
http://www.uvm.edu/~uvmpr/?Page=news&storyID=18473

Further reports about: Science composition diversity long-term observations oceans sampling species tropics

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>