Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprises Discovered in Decoded Kiwifruit Genome

29.10.2013
A new study that decoded the DNA sequence of the kiwifruit has concluded that the fruit has many genetic similarities between its 39,040 genes and other plant species, including potatoes and tomatoes. The study also has unveiled two major evolutionary events that occurred millions of years ago in the kiwifruit genome.

“The kiwifruit is an economically and nutritionally important fruit crop. It has long been called ‘the king of fruits’ because of its remarkably high vitamin C content and balanced nutritional composition of minerals, dietary fiber and other health-benefits,” says Zhangjun Fei, a scientist from the Boyce Thompson Institute at Cornell University. Fei contributed heavily to the study, which was conducted by a team of plant scientists from the United States and China and published Oct. 18 in Nature Communications.

“The genome sequence will serve as a valuable resource for kiwifruit research and may facilitate the breeding program for improved fruit quality and disease resistance,” Fei says.

Kiwifruit originated from the mountains and ranges of southwestern China and was not really known to the world until the early 20th century, when farmers in New Zealand discovered the fruit and began breeding it as a commercial crop. It is a form of berry that grows on woody vines, much like grapes, and belongs to the order of Ericales, where blueberries, tea bushes and Brazil nuts are also classified.

One of the most remarkable findings of the study was uncovered when scientists observed a high percentage of similarities within the kiwifruit DNA. The data revealed two unusual mishaps that occurred in the process of cell division about 27 and 80 million years ago, when an extensive expansion of genes arose from an entire extra copy of the genome, followed by extensive gene loss.

Fei explains, “The kiwifruit genome has undergone two recent whole-genome duplication events.”

When genes are duplicated, the extra genes can mutate to perform entirely new functions that were not previously present in the organism. This process, called neofunctionalization, can occur with no adverse effects in plants and, in the case of kiwifruit, was quite beneficial.

“The duplication contributed to adding additional members of gene families that are involved in regulating important kiwifruit characteristics, such as fruit vitamin C, flavonoid and carotenoid metabolism,” says Fei.

For the sequencing, the scientists used a Chinese variety called “Hongyang,” which is widely grown in China, to produce the draft sequence. They then compared kiwifruit to the genomes of other representative plant species including tomato, rice, grape and the mustard weed Arabidopsis. They uncovered about 8,000 genes that were common among all five species. The comparison revealed important evolutionary relationships, including the development genes related to fruit growth, ripening, nutrient metabolism, and disease resistance.

Prior to the study, extensive research on the metabolic accumulation of vitamin C, carotenoids and flavonoids had been reported in kiwifruits, but genome sequence data, critical for its breeding and improvement, had never been available.

“The kiwifruit genome sequence represents the first of a member in the order Ericales, thus providing a valuable resource for comparative genomics and evolutionary studies,” Fei says. “We expect to continue generating genome sequences from other kiwifruit varieties to investigate the genetic diversity of kiwifruit and elucidate regulatory networks of important biological processes.”

The sequence is accessible online at the Kiwifruit Genome Database.
Cornell University has television and ISDN radio studios available for media interviews.

Melissa Osgood | Newswise
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>