Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Surprise: Scientists discover that inflammation helps to heal wounds

New research in the FASEB Journal suggests that muscle inflammation after acute muscle injury is essential to muscle repair by means of insulin-like growth factor-1

A new research study published in The FASEB Journal ( may change how sports injuries involving muscle tissue are treated, as well as how much patient monitoring is necessary when potent anti-inflammatory drugs are prescribed for a long time.

That's because the study shows for the first time that inflammation actually helps to heal damaged muscle tissue, turning conventional wisdom on its head that inflammation must be largely controlled to encourage healing. These findings could lead to new therapies for acute muscle injuries caused by trauma, chemicals, infections, freeze damage, and exposure to medications which cause muscle damage as a side effect.

In addition, these findings suggest that existing and future therapies used to combat inflammation should be closely examined to ensure that the benefits of inflammation are not eliminated.

"We hope that our findings stimulate further research to dissect different roles played by tissue inflammation in clinical settings, so we can utilize the positive effects and control the negative effects of tissue inflammation," said Lan Zhou, M.D., Ph.D., a researcher involved in the work from the Neuroinflammation Research Center/Department of Neurosciences/Lerner Research Institute at the Cleveland Clinic in Ohio.

Zhou and colleagues found that the presence of inflammatory cells (macrophages) in acute muscle injury produce a high level of a growth factor called insulin-like growth factor-1 (IGF-1) which significantly increases the rate of muscle regeneration. The research report shows that muscle inflammatory cells produce the highest levels of IGF-1, which improves muscle injury repair. To reach this conclusion, the researchers studied two groups of mice. The first group of mice was genetically altered so they could not mount inflammatory responses to acute injury. The second group of mice was normal. Each group experienced muscle injury induced by barium chloride. The muscle injury in the first group of mice did not heal, but in the second group, their bodies repaired the injury. Further analysis showed that macrophages within injured muscles in the second group of mice produced a high level of IGF-1, leading to significantly improved muscle repair.

"For wounds to heal we need controlled inflammation, not too much, and not too little," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "It's been known for a long time that excess anti-inflammatory medication, such as cortisone, slows wound healing. This study goes a long way to telling us why: insulin-like growth factor and other materials released by inflammatory cells helps wound to heal."

Receive monthly highlights from the FASEB Journal by e-mail. Sign up at The FASEB Journal ( is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Haiyan Lu, Danping Huang, Noah Saederup, Israel F. Charo, Richard M. Ransohoff, and Lan Zhou. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury FASEB J. doi:10.1096/fj.10-171579 ;

Cody Mooneyhan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>