Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surfaces and Interfaces

26.11.2010
Innovative techniques allow researchers to study interfaces with great precision. The methods could become powerful tools in the rational design of catalytic materials

Equipment built by German scientists can be used to study processes at interfaces with great accuracy. In an article published recently in ChemPhysChem, Hans Joachim Freund and co-workers of the Fritz-Haber-Institut in Berlin describe the advancement of four experimental techniques developed in their lab to investigate nanoscopic systems.

By combining photon scanning tunneling microscopy, aberration-corrected low-energy electron microscopy coupled to photoelectron emission microscopy, microcalorimetry, and electron-spin resonance spectroscopy, unique information on the relationship between geometric structure and properties is obtained. The methods can be applied to solve fundamental problems in surface science and to study interesting systems -particularly in the field of catalysis- which would otherwise be difficult (or impossible) to address.

“Catalysis happens at interfaces and experimental techniques are desperately needed to provide information on those systems”, says Freund who is interested in understanding disperse metal and oxide catalysts at the atomic scale. According to the researcher, appropriate samples in this field are very complex so that a combination of techniques is generally required to achieve a complete picture and avoid overestimating individual results. This led him and his colleagues to design new instruments to characterize their systems.

The first method developed by the German team could overcome one of the main disadvantages of scanning probe techniques, namely, their inherent chemical insensitivity, by detecting the fluorescence signal generated by locally exciting the surface with electrons from the tip. The new technique is called photon scanning tunneling microscopy (PSTM) and has been used to study the optical characteristics of metal particles and investigate defect structures in oxide surfaces. Additionally, the researchers are working on a new aberration-corrected instrument for low-energy electron microscopy (LEEM) and photoelectron emission microscopy (PEEM), which will hopefully allow them to investigate single supported nanocatalysts. Freund and co-workers have also built a highly sensitive microcalorimeter that can be used to measure temperature-dependent heats of adsorption on nanoparticle ensembles with aggregate sizes of about a hundred atoms. The fourth technique, called electron-spin resonance (ESR) spectroscopy, can be applied to study particle ensembles and may provide interesting information that is out of reach for other methods, the authors say.

Author: Hans Joachim Freund, Fritz-Haber Institut der Max-Planck Gesellschaft, Berlin (Germany), http://www.fhi-berlin.mpg.de/cp/hjf.epl

Title: Innovative Measurement Techniques in Surface Science

ChemPhysChem 2011, 12, No. 1, Permalink to the article: http://dx.doi.org/10.1002/cphc.201000812

Hans Joachim Freund | Wiley-VCH
Further information:
http://www.fhi-berlin.mpg.de/cp/hjf.epl
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>