Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suppressing activity of common intestinal bacteria reduces tumor growth

10.05.2010
Mouse studies promising to colon cancer patients who currently have surgery as only option

A team of University of California, San Diego School of Medicine researchers has discovered that common intestinal bacteria appear to promote tumor growths in genetically susceptible mice, but that tumorigenesis can be suppressed if the mice are exposed to an inhibiting protein enzyme.

The research, said lead author Eyal Raz, MD, a professor of medicine at UC San Diego, could portend an eventual new form of treatment for people with familial adenomatous polyposis or FAP, an inherited condition in which numerous initially benign polyps form in the large intestine, eventually transforming into malignant colon cancer.

The research appears online May 9 in the journal Nature Medicine.

Raz, with colleagues at the UC San Diego School of Medicine and Wonkwang University in the Republic of Korea, looked at interactions between the vast numbers of bacteria typically found in the gastrointestinal tract and the tract's mucosal lining. Ordinarily, the bacteria and tract establish a kind of homeostasis. "In a normal host, these bacteria actually serve important roles, such as supporting cell production," said Raz. "But in susceptible hosts, the presence of these bacteria turns out to be detrimental."

Specifically, Raz and his co-authors found that mice with an engineered mutation that closely mimics FAP in humans leaves the mice notably vulnerable to inflammatory factors produced by ordinary bacterial activity. The constant inflammation enhances expression of an oncogene called c-Myc. Very quickly, the mice develop numerous tumors in their intestines and typically do not survive past six months of age.

In humans, FAP can be equally devastating. It is a genetic condition in which patients at a young age begin to develop hundreds to thousands of polyps in their intestine. By age 35, 95 percent of individuals with FAP have polyps. The polyps start out benign, but ultimately become malignant without treatment. Current treatment essentially consists of prophylactic surgery -- removal of the polyps before they turn cancerous.

"Right now, people with FAP don't have many options," said Raz. "They develop the cancer relatively early in life and the only treatment is surgery, often a total colectomy – the removal of the entire colon. And that still doesn't preclude the possibility of developing tumors elsewhere in the body."

That's why the second part of the study was especially encouraging, Raz said. When researchers administered a protein enzyme called extracellular signal-related kinase or ERK, it appeared to suppress intestinal turmorigenesis in the mice, causing cancer proteins to degrade more rapidly and increasing the survival time of the mice. If the inhibiting enzyme, which is currently undergoing clinical trials elsewhere, proves to be safe and effective, researchers say it eventually could provide FAP patients with another option other than surgery.

"This is a clear case of nature and nurture in molecular biology," said Raz. "Nature is the host, who in some cases is going to be genetically predisposed to develop certain diseases. Nurture is the environment, which in this case is bacterial activity and its effects. The mechanism for what's happening here with these mice and tumor growth is very clear. We know what we want and need to do."

Co-authors of the paper include Li-Li Hu, Jose Gonzalez-Navajas, Carol Shen, Jonathan Brick, Scott Herdman, Maripat Corr and Jongdae Lee, all from UCSD's Department of Medicine, plus Nissi Varki of the Department of Pathology at UCSD and Sung Hee Lee and Geom Seog Seo at Wonkwang University in Korea. The work was supported with grants from the National Institutes of Health.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: FAP Medicine Nature Immunology Raz Suppressing protein enzyme tumor growth

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>