Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supposed Help Against Tumors - How Tumor Cells Use the Body's Protection

05.12.2008
Glioblastoma is one of the most common but also most aggressive brain tumors, almost invariably leading to death in a short time. It consists of different cell types and their precursors, complicating successful treatment.

To fight the driving force of the tumor - the tumor stem cells - scientists have been trying to initiate apoptosis in these cells. However, Dr. Ana Martin-Villalba (German Cancer Research Center, DKFZ, Heidelberg, Germany) suspects that the activated apoptosis program accelerates the progress of the disease. "The tumor growth declines when apoptosis is blocked," she reported at the conference "Brain Tumor 2008" at the Max Delbrück Center (MDC) Berlin-Buch, Germany.

Glioblastomas grow like corals and form filigran branches into nearby, healthy brain tissue. For that reason it is very difficult for neurosurgeons to remove the tumor entirely because the risk of damaging healthy tissue is too high. Moreover, glioblastomas are resistant to conventional therapies which normally activate the body's apoptosis program.

This programmed cell death is a vital process. It plays an important role during development but also in the adult organism. Together with its partner CD95L, the molecular switch CD95 ensures that sick or abnormal cells are removed. Once activated, CD95 triggers a chain of different signals which in the end lead to the death of the damaged cell. Until recently, scientists were convinced that triggering apoptosis in brain tumors was a useful tool for not only killing the tumor but also the cells of its origin - the tumor stem cells.

The scientist from Heidelberg could show that CD95 as well as its partner CD95L is active in the tumor cells. However, the cells do not die. "Instead, the signal stimulates the tumor cells to migrate into neighboring, healthy brain regions," Dr. Martin-Villalba explained. For instance, it activates the protein MMP which "drills" its way into the brain tissue. "Contrary to our expectations," the neuroscientist said, "what we find when we activate apoptosis in the tumor cells is that we help them spread into healthy nerve tissue."

In experiments with mice, the researchers could already show that the tumor proliferates less aggressively when they block CD95L with an antibody, thus inhibiting the activation of programmed cell death. "With this changed perspective, we hope to develop new ideas for tumor therapy in the future," Dr. Martin-Villalba said.

Altogether, about 180 scientists and clinicians from Europe and the USA came to the two-day conference, which ended this Friday afternoon. The organizers were the MDC, the Charité - Universitätsmedizin Berlin, and HELIOS Kliniken GmbH, Berlin, a private clinic in Berlin-Buch.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/
http://www.dkfz-heidelberg.de/en/molekulare-neurobiologie/index.html
http://www.cell.com/cancer-cell/retrieve/pii/S1535610808000433

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>