Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supporting the troops

04.04.2011
In the absence of vitamin A, the body loses immune cells that put the brakes on the earliest stages of infection

Scientists have recognized the immune-boosting capabilities of vitamin A for the better part of a century, even without fully understanding how it helps the body fight off bacteria and viruses.

“Soon after its discovery, vitamin A was termed ‘the anti-infective vitamin’ and was widely used to enhance recovery; but with the introduction of antibiotics, the therapeutic use of vitamin A diminished,” says Sidonia Fagarasan of the RIKEN Center for Allergy and Immunology in Yokohama.

Fagarasan and her colleagues have now revealed how vitamin A deficiency can critically undermine the body’s initial defense against infection[1]. B1 cells within the peritoneal cavity (PEC), the space surrounding the intestines and other organs, are important ‘first responders’ to the presence of pathogens (Fig. 1). Upon activation, B1 cells mature into cells that produce immunoglobulin M (IgM) and A (IgA) antibodies that target bacteria and viruses in the bloodstream and gut, respectively. “These cells usually act at the early time window after infection, thus preventing the expansion of microorganisms,” explains Fagarasan.

Mikako Maruya, a young researcher with her team, observed dramatic depletion of PEC B1 cells in mice fed a vitamin A-free diet, which grew more severe with age. Accordingly, these vitamin A-deficient (VAD) animals also produced lower levels of both IgA and IgM, and failed to marshal an effective antibody response following injection with pneumonia vaccine. B1 cells transplanted from healthy donors to VAD animals showed impaired proliferation, and considerably dwindled in number over the course of a week. Importantly, bone marrow-derived stem cells from VAD mice retained the capacity to give rise to B1 cells, although they failed to do so in the absence of vitamin A.

The key turned out to be nuclear factor of activated T cells 1 (NFATc1), a transcription factor protein that regulates expression of numerous important genes in B1 cells. The researchers observed reduced NFATc1 levels in VAD B1 cells, but found that expression could be largely restored if these mice were injected with ATRA, a product of cellular vitamin A metabolism. This also led to rapid B1 cell proliferation, which increased in number by more than four-fold increase within 10 days of injection.

Motivated by these findings, Fagarasan is now exploring how levels of vitamin A affect other components of the immune response to infection. “We were very excited to discover something that we had never thought about, that active products of vitamin A contribute to the induction of some very important transcription factors,” she says.

The corresponding author for this highlight is based at the Laboratory for Mucosal Immunity, RIKEN Center for Allergy and Immunology

Journal information

[1] Maruya, M., Suzuki, K., Fujimoto, H., Miyajima, M., Kanagawa, O., Wakayama, T. & Fagarasan, S. Vitamin A-dependent transcriptional activation of the nuclear factor of activated T cells c1 (NFATc1) is critical for the development and survival of B1 cells. Proceedings of the National Academy of Sciences USA 108, 722–727 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6557
http://www.researchsea.com

Further reports about: Allergy Fagarasan IgA IgM Immunology NFATc1 PEC RIKEN T cells transcription factor vitamin A

More articles from Life Sciences:

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

nachricht Beer can lift your spirits
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017 | Life Sciences

The fastest light-driven current source

26.09.2017 | Physics and Astronomy

Beer can lift your spirits

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>