Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supplement your stem cells

09.04.2010
A nutritional supplement could stimulate the production of stem cells integral for repairing the body. Research published in BioMed Central's open access Journal of Translational Medicine suggests that a commercially-available supplement can increase the blood circulation of hematopoietic stem cells, which can give rise to all blood cells, and endothelial progenitor cells, which repair damage to blood vessels.

Thomas E. Ichim from Medistem Incorporated, USA worked with a team of 13 researchers from industry and academia to further investigate whether this supplement, containing a cocktail of green tea, astralagus, goji berry extracts, 'good' bacteria Lactobacillus fermentum, antioxidant ellagic acid, immune enhancer beta 1,3 glucan and vitamin D3, was able to increase the number of stem cells circulating in the blood.

They recruited 18 healthy adults aged between 20 and 72 who stopped any other dietary supplements 4-5 days before starting a two-week course of this supplement, taking it twice daily. The researchers took blood from the participants before they started the course and on days 1, 2, 7 and 14 to test for signs of stem cell activity by looking for cells expressing the genetic stem cell markers CD133, CD34 and KDR. They then confirmed whether taking the supplement changed the overall levels of hematopoietic stem cells and endothelial progenitor cells in the blood by using HALO (Hematopoietic Assay via Luminescent Output) and colony forming assays respectively.

Hematopoietic stem cells and endothelial progenitor cells increased after taking the nutritional supplement, suggesting that the supplement may be a useful stimulator for both types of stem cells. In this study, the levels of these stem cells peaked at 2-7 days and started to drop at 14 days, suggesting that this supplement could be used for continuous treatment for conditions associated with decreases in these stem cells such as Alzheimer's Disease. Other therapeutic treatments used to recruit hematopoietic stem cells are not viable as long-term solutions due to costs and increased health risks caused by the extremely high levels of stem cells that these treatments maintain in the blood.

"To our knowledge, this is the first study demonstrating profound mobilization effect with possible clinical significance by a food supplement-based approach", say the authors, adding, "Indeed it may be possible that our supplement could be beneficial in conditions associated with reduced progenitor cells such as diabetes or in smokers which possess lower baseline values as compared to controls". Although they are quick to add, "However, given commercial pressures associated with this largely unregulated field, we propose detailed scientific investigations must be made before disease-associated claims are made by the scientific community".

Notes to Editors

1. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects
Nina A Mikirova, James A Jackson, Ron Hunninghake, Julian Kenyon, Kyle WH Chan, Cathy A Swindlehurst, Boris Minev, Amit N Patel, Michael P Murphy, Leonard Smith, Famela Ramos, Doru T Alexandrescu, Thomas E Ichim and Neil H Riordan

Journal of Translational Medicine (in press)

2. Journal of Translational Medicine is an open access journal publishing articles focusing on information derived from human experimentation so as to optimise the communication between basic and clinical science.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>