Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Supermodel' mouse reveals mechanisms that regulate metabolism, researchers find

21.05.2014

A lean "Supermodel" mouse type has revealed the potentially critical role played by a largely unknown gene that regulates metabolism, findings that could provide new insight into diseases ranging from diabetes to obesity, a new study by UT Southwestern Medical Center researchers suggests.

The Supermodel mouse's phenotype – the physical characteristics that result from its gene makeup – include being very small in size, with an unusual body form caused by abnormal distribution of fat, said Dr. Zhe Chen,  Assistant Professor of Biophysics, and Dr. Bruce Beutler, Professor of  Immunology, with UT Southwestern's Center for the Genetics of Host Defense. The mouse phenotype is nicknamed "Supermodel."

"This mouse is important because it has revealed a new regulatory protein that's very important for normal metabolism, but was never known to exist before," said Nobel Laureate Dr. Beutler, Director of the Center for the Genetics of Host Defense. "The implications of the work may be felt in diabetes and obesity research, the study of wasting in chronic disease, the study of muscle cell function, and perhaps other fields."

While at the Scripps Research Institute, Dr. Beutler developed a mouse mutagenesis program, which at UT Southwestern has become the largest and most technologically advanced in the world. The new mouse phenotype was discovered in the lab's colony of mutant mice several years ago, but the mutation was discovered and studied entirely at UT Southwestern, in a collaboration that also involved researchers Dr. William Holland, Assistant Professor of Internal Medicine, Dr. Aktar Ali, Assistant Professor of Internal Medicine, and John Shelton, lab manager in Internal Medicine. Together, they found that a mutation in a gene called Samd4, about which almost nothing was known in mammals, results in the abnormally lean mice, which also have diminished insulin responses to glucose and arginine.

"Whereas many heritable obesity phenotypes are known, lean phenotypes are comparatively uncommon. Yet they can reveal critical checkpoints regulating energy balance," the researchers said.

The mice seem to waste energy, consuming excessive oxygen and producing a commensurately higher amount of CO2, despite being relatively inactive. Much of the fat in these mice seems to be abnormal, similar to "brown fat" of hibernating species.

The findings, appearing in the Proceedings of the National Academy of Sciences, may be explained by the apparent involvement of Sterile alpha motif domain containing protein 4 (Samd4) in a specific cell signaling pathway, which tell cells how to interact, called mTORC1.  mTORC1 is a master regulatory complex that governs aspects of energy balance, including metabolism, development, autophagy (cell recycling), and other processes in cells.

###

Dr. Bruce A. Beutler shared the 2011 Nobel Prize in Physiology or Medicine with two other scientists for their discoveries related to activation of the immune system.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 91,000 hospitalized patients and oversee more than 2 million outpatient visits a year.

Russell Rian | Eurek Alert!

Further reports about: Genetics Medical arginine discovered mTORC1 mechanisms metabolism phenotype phenotypes species

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>