Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superior offspring without genetic modification

08.12.2009
We don't always turn out like our parents.
Sometimes we become even better.
How this happens is the subject of a new research project at the University of Gothenburg.

When two gene pools combine, you might expect the characteristics of the offspring to end up somewhere in the middle between those of its parents. But children often have characteristics that are better or worse than that middle value, sometimes even better than both parents.

Better horses, redder tomatoes
This is not a newly-recognized phenomenon. Indeed, it has been exploited to breed better horses, redder tomatoes, more nutritious rice, and salmon that can thrive in fish farms, to mention but a few examples.
New research project
Heterosis is the scientific term for being better than your parents. Why does heterosis occur? What is the molecular mechanism? How common is it? How can we make it happen more often and to greater effect? Researchers at the Department of Cell and Molecular Biology at the University of Gothenburg and the Norwegian University of Life Sciences outside Oslo are aiming to find answers to these questions in a new research project.
Baker's yeast
Using baker's yeast as a model, Jonas Warringer and his colleague Stig Omholt are mapping the incidence of heterosis for a large number of different characteristics. They hope to discover the mechanisms in human cells that govern the creation of children with characteristics sometimes superior to those of their parents. They are initially studying yeast cells - in which the mechanism has already been established.
Brewer's yeast
In their first studies, Warringer and Omholt have shown how heterosis has enabled brewer's yeast to develop tolerance to copper, something that helps the yeast to survive in the large copper tanks used in the brewing industry. After some of the results where published in Nature in March this year, the interest in Warringers and Omholts research has increased.
Life on Mars
"Once we understand how heterosis occurs, breeding can be controlled so that we can selectively promote desirable characteristics in plants and animals more quickly and effectively. This could help in the fight against famine, help us develop new biofuels for cars, and possibly, in the distant future, make it possible to create a functioning ecosystem on Mars - without having to resort to genetic modification," says Jonas Warringer.
Contact:
Jonas Warringer, research assistent, Department of cell- och molecular biologi, University of Gothenburg
46 730 226322
31 786 39 61
jonas.warringer@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se/

Further reports about: fish farms human cell more nutritious rice redder tomatoes

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>