Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercool: Water Doesn't Have to Freeze Until
Minus 55 F

28.11.2011
We drink water, bathe in it and we are made mostly of water, yet the common substance poses major mysteries. Now, University of Utah chemists may have solved one enigma by showing how cold water can get before it absolutely must freeze: 55 degrees below zero Fahrenheit.

That’s 87 degrees Fahrenheit colder than what most people consider the freezing point of water, namely, 32 F.

Supercooled liquid water must become ice at minus 55 F not just because of the extreme cold, but because the molecular structure of water changes physically to form tetrahedron shapes, with each water molecule loosely bonded to four others, according to the new study by chemists Valeria Molinero and Emily Moore.

The findings suggest this structural change from liquid to “intermediate ice” explains the mystery of “what determines the temperature at which water is going to freeze,” says Molinero, an assistant professor at the University of Utah and senior author of the study, published in the Thursday, Nov. 24 issue of the journal Nature.

“This intermediate ice has a structure between the full structure of ice and the structure of the liquid,” she adds. “We’re solving a very old puzzle of what is going on in deeply supercooled water.”

However, in the strange and wacky world of water, tiny amounts of liquid water theoretically still might be present even as temperatures plunge below minus 55 F and almost all the water has turned solid – either into crystalline ice or amorphous water “glass,” Molinero says. But any remaining liquid water can survive only an incredibly short time – too short for the liquid’s properties to be detected or measured.

How and at what temperature water must freeze has more than just “gee-whiz” appeal. Atmospheric scientists studying global warming want to know at what temperatures and rates water freezes and crystallizes into ice.

“You need that to predict how much water in the atmosphere is in the liquid state or crystal state,” which relates to how much solar radiation is absorbed by atmospheric water and ice, Molinero says. “This is important for predictions of global climate.”

A Strange Substance

Liquid water is a network of water molecules (each with two hydrogen atoms and one oxygen atom) held loosely together by what is called hydrogen bonding, which is somewhat like static cling. Molinero says that depending on its temperature and pressure, water ice has 16 different crystalline forms in which water molecules cling to each other with hydrogen bonds.

Molinero says that “what makes water so strange is that the way liquid water behaves is completely different from other liquids. For example, ice floats on water while most solids sink into their liquid forms because they are denser than the liquids.”

Water’s density changes with temperature, and it is most dense at 39 F. That’s why fish survive under ice covering a pond by swimming in the warmer, denser water at the bottom of the pond.

But the property of water that “is most fascinating is that you can cool it down well below 32 degrees Fahrenheit and it still remains a liquid,” says Molinero.

Liquid water as cold as minus 40 F has been found in clouds. Scientists have done experiments showing liquid water can exist at least down to minus 42 F.

Why doesn’t water necessarily freeze at 32 F like we were taught in school?

“If you have liquid water and you want to form ice, then you have to first form a small nucleus or seed of ice from the liquid. The liquid has to give birth to ice,” says Molinero. “For rain, you have to make liquid from vapor. Here, you have to make crystal [ice] from liquid.”

Yet in very pure water, “the only way you can form a nucleus is by spontaneously changing the structure of the liquid,” she adds.

Molinero says key questions include, “under which conditions do the nuclei form and are large enough to grow?” and “what is the size of this critical nucleus?”

Computing What Cannot Be Measured

Molinero says that “when you cool down water, its structure becomes closer to the structure of ice, which is why the density goes down, and this should be reflected in an increased crystallization rate.”

Supercooled water has been measured down to about minus 42 F, which is its “homogenous nucleation temperature” – the lowest temperature at which the ice crystallization rate can be measured as water is freezing. Below this temperature, ice is crystallizing too fast for any property of the remaining liquid to be measured.

To get around the problem, Molinero and chemistry doctoral student Moore used computers at the University of Utah’s Center for High Performance Computing. The behavior of supercooled water was simulated and also modeled using real data.

Computers provide “a microscopic view through simulation that experiments cannot yet provide,” Molinero says.

Previous computer simulations and modeling were too slow and had to last long enough for the freezing process to occur. And it was necessary to simulate thousands of nucleation events to make valid conclusions.

Molinero and Moore devised a new computer model that is 200 times faster than its predecessors. The model simplified the number crunching by considering each three-atom water molecule to be a single particle similar to a silicon atom and capable of sticking together with hydrogen bonding.

Even so, it took thousands of hours of computer time to simulate the behavior of 32,768 water molecules (much smaller than a tiny drop of water) to determine how the heat capacity, density and compressibility of water changes as it is supercooled, and to simulate how fast ice crystallized within a batch of 4,000 water molecules.

The Birth of Ice

The computers helped Molinero and Moore determine how cold water can get before it reaches its theoretical maximum crystallization rate and must freeze. The answer: minus 55 F (or minus 48 degrees Celsius).

The computers also showed that as water approaches minus 55 F, there is a sharp increase in the proportion of water molecules attached to four others to form tetrahedrons.

“The water is transforming to something else, and this something else is very close to ice,” says Molinero. She calls it intermediate ice.

If a microscopic droplet of water is cooled very fast, it forms what is called a glass – low-density amorphous ice – in which all the tetrahedrons of water molecules are not lined up to form perfect crystals. Instead, low-density ice is amorphous like window glass. The study found that as many as one-quarter of the molecules in the amorphous “water glass” are organized either as intermediate ice or as tiny ice crystals.

When water approaches minus 55 F, there is an unusual decrease in density and unusual increases in heat capacity (which goes up instead of down) and compressibility (water gets easier to compress as it gets colder, unlike most liquids). These unusual thermodynamics coincide with liquid water changing to the tetrahedral structure.

“The change in structure of water controls the rate at which ice forms,” Molinero says. “We show both the thermodynamics of water and the crystallization rate are controlled by the change in structure of liquid water that approaches the structure of ice.”

University of Utah Public Relations 201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350
www.unews.utah.edu
Contacts:
-- Valeria Molinero, assistant professor of chemistry – (801) 585-9618, valeria.molinero@utah.edu
-- Lee Siegel, science news specialist, University of Utah Public Relations –
office (801) 581-8993, cellular (801) 244-5399, leesiegel@ucomm.utah.edu

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>