Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputing Research Opens Doors for Drug Discovery

13.12.2010
A quicker and cheaper technique to scan molecular databases developed at the Department of Energy’s Oak Ridge National Laboratory could put scientists on the fast track to developing new drug treatments.

A team led by Jerome Baudry of the University of Tennessee-ORNL Center for Molecular Biophysics adapted a widely used existing software to allow supercomputers such as ORNL’s Jaguar to sift through immense molecular databases and pinpoint chemical compounds as potential drug candidates.

The research was published in the Journal of Computational Chemistry as “Task-parallel MPI implementation of Autodock4 for docking of very large databases of compounds using High Performance Super-Computers.”

“Our research is the missing link between supercomputers and the huge data available in molecular databases like the Human Genome Project,” Baudry said. “We have an avalanche of data available to us, and now we need to translate that data into knowledge.”

Such translation is critical for the first stages of drug development, in which researchers look for appropriate chemicals that interact with a target in the body, typically a protein. If the chemical is suitable, it attaches onto the protein and produces a desirable effect in the cell.

But with thousands of known proteins and millions of chemicals as potential drugs, the number of possible combinations is astronomical.

“It is very expensive and time-consuming to measure these interactions experimentally,” Baudry said. “But with supercomputers, we can process millions of molecules a day.”

The quick and efficient processing of molecules offers scientists an opportunity to take risks on previously unexamined drug candidates, which could lead to diverse and innovative classes of drugs.

“Before, we threw away a lot of information because molecules did not have a preferred profile,” Baudry said. “Now, every molecule can be examined without worrying about wasting resources.”

The researchers have already started work to launch the research into reality through a new collaboration supported by the National Institutes of Health. The project team plans to put the computational development to work on ORNL supercomputers to look for chemicals that could treat prostate cancer. The research is funded by a NIH Clinical Translational Science Award, which was awarded to Georgetown and Howard Universities and includes ORNL, Med/Star Health and the Washington D.C. Veterans Affairs Medical Center as key partners.

“Our development work is the computational equivalent of building the Saturn V rocket,” Baudry said. “Now we want to fly it to the moon.”

Funding for the initial development work was provided by ORNL’s Laboratory Directed Research and Development program. The University of Tennessee and the Joint UT/ORNL Genome Sciences and Technology graduate program also supported the work. The research team included Barbara Collignon, Roland Schulz and Jeremy Smith of the UT-ORNL Center for Molecular Biophysics. The three researchers as well as Baudry are also affiliated with the University of Tennessee’s Department of Biochemistry and Cellular and Molecular Biology.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Morgan McCorkle | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>