Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputing Research Opens Doors for Drug Discovery

13.12.2010
A quicker and cheaper technique to scan molecular databases developed at the Department of Energy’s Oak Ridge National Laboratory could put scientists on the fast track to developing new drug treatments.

A team led by Jerome Baudry of the University of Tennessee-ORNL Center for Molecular Biophysics adapted a widely used existing software to allow supercomputers such as ORNL’s Jaguar to sift through immense molecular databases and pinpoint chemical compounds as potential drug candidates.

The research was published in the Journal of Computational Chemistry as “Task-parallel MPI implementation of Autodock4 for docking of very large databases of compounds using High Performance Super-Computers.”

“Our research is the missing link between supercomputers and the huge data available in molecular databases like the Human Genome Project,” Baudry said. “We have an avalanche of data available to us, and now we need to translate that data into knowledge.”

Such translation is critical for the first stages of drug development, in which researchers look for appropriate chemicals that interact with a target in the body, typically a protein. If the chemical is suitable, it attaches onto the protein and produces a desirable effect in the cell.

But with thousands of known proteins and millions of chemicals as potential drugs, the number of possible combinations is astronomical.

“It is very expensive and time-consuming to measure these interactions experimentally,” Baudry said. “But with supercomputers, we can process millions of molecules a day.”

The quick and efficient processing of molecules offers scientists an opportunity to take risks on previously unexamined drug candidates, which could lead to diverse and innovative classes of drugs.

“Before, we threw away a lot of information because molecules did not have a preferred profile,” Baudry said. “Now, every molecule can be examined without worrying about wasting resources.”

The researchers have already started work to launch the research into reality through a new collaboration supported by the National Institutes of Health. The project team plans to put the computational development to work on ORNL supercomputers to look for chemicals that could treat prostate cancer. The research is funded by a NIH Clinical Translational Science Award, which was awarded to Georgetown and Howard Universities and includes ORNL, Med/Star Health and the Washington D.C. Veterans Affairs Medical Center as key partners.

“Our development work is the computational equivalent of building the Saturn V rocket,” Baudry said. “Now we want to fly it to the moon.”

Funding for the initial development work was provided by ORNL’s Laboratory Directed Research and Development program. The University of Tennessee and the Joint UT/ORNL Genome Sciences and Technology graduate program also supported the work. The research team included Barbara Collignon, Roland Schulz and Jeremy Smith of the UT-ORNL Center for Molecular Biophysics. The three researchers as well as Baudry are also affiliated with the University of Tennessee’s Department of Biochemistry and Cellular and Molecular Biology.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Morgan McCorkle | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>