Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer provides new insights into the vibrations of water

23.06.2010
Biomolecular solutes perturb choreography
RUB-chemists report in PNAS

Using Terahertz spectroscopy, RUB-chemists recently detected the surprisingly long-ranged influence of solvated biomolecules on the “dance” of surrounding water molecules. With extensive simulations on a supercomputer, they now succeeded in describing this choreography in detail. In the virtual laboratory, scientists headed by Prof. Dr. Dominik Marx (Theoretical Chemistry) and Prof. Dr. Martina Havenith-Newen (Physical Chemistry II) found evidence for a mechanism that allows dissolved biomolecules to influence water molecules at distances extending to several molecule diameters.


Dance of water molecules

The interfaces between biomolecules and water play a crucial role. They report their results in the current issue of the Proceedings of the National Academy of Sciences (PNAS).

Unexpected results using THz radiation

Liquid water, as well as other liquids, exhibits characteristic vibrations upon excitation with electromagnetic waves over a wide spectral range. At frequencies which correspond to infrared light, vibrational motions within single molecules can be observed. “At lower frequencies, in the Terahertz range, which is situated between the frequencies of the infrared light and microwave radiation in the electromagnetic spectrum, far more complex motions take place involving motions of whole water molecules relative to each other”, explains Terahertz specialist Prof. Havenith-Newen. “In particular, these motions involve closing and breaking of the three dimensional hydrogen bond network of water, which interconnects water molecules and is responsible for the unique properties of water.” Observations of this kind have become feasible only lately with the development of advanced laser light sources. Studies performed at the RUB lead to the discovery of an unexpectedly long ranged influence of biologically relevant solutes, such as sugars and proteins, on the motions of water, the so-called “Terahertz-dance” of water. In the vicinity of the molecule, water motion is highly ordered: “While water molecules usually behave like disco dancers, in the proximity of biomolecules they perform a minuet”, says Prof. Havenith-Newen. However, until now a detailed explanation of this unexpected phenomenon was not available.

The choreography of water

The underlying vibrational motions between water molecules are extremely complex. So far it was not possible to explain the experimental result with a molecular mechanism. In a joint effort, scientists of both departments performed molecular dynamics simulations of water, which in contrast to conventional approaches, are not based on empirical models for the interactions between molecules, but employ ab initio calculations. For the first time such simulations have been carried out on a scale which allows for statistically meaningful statements about the comparably slow vibrational motions between the water molecules. These extensive calculations were supported by the Leibniz Computing Center in Garching near Munich, which granted access to computational resources on the national supercomputer HLRB2. The use of newly developed analysis methods yielded a precise description of the THz vibrations in water as a correlated motion of many water molecules: a sort of motion of water droplets within the water. “Therefore we have uncovered ‘the choreography of pure water’ at low frequencies”, says Prof. Marx.

Perturbed choreography

If another substance, such as a protein, is dissolved in water, it “perturbs” this choreography at its interface. This allows for a qualitative understanding of the experimental results using THz spectroscopy. “The correlated motions of water molecules at THz frequencies exhibit entirely new characteristics, which are significantly different from the well-known infrared vibrations of the chemical bonds within a molecule”, explains Prof. Marx. As this study shows, the latter are well described as localized vibrational motions within single molecules as well as direct neighbors. This is in stark contrast to the choreography of the THz dance of water: Here, many water molecules, connected only indirectly via hydrogen bonds, move together in a concerted motion in space and time. It is the change of this correlation, evoked by the biomolecule-water interface, which is detected by THz spectroscopy and used for technological applications.

Research Department “Interfacial Systems Chemistry“

The interdisciplinary cooperation started within the Research Department “Interfacial Systems Chemistry” of the RUB and was supported by the Humboldt foundation. Only lately, in the end of may, the results were presented to the scientific community for the first time during the Leopoldina symposium: “The Complexity Connecting Biomolecular Structure and Solvation Dynamics” held at the RUB.

Title

Matthias Heyden, Jian Sun, Stefan Funkner, Gerald Mathias, Harald Forbert, Martina Havenith, Dominik Marx: Dissecting the THz spectrum of liquid water from first principles via correlations in time and space. In: PNAS online before print, 21.6.2010, doi: 10.1073/pnas.0914885107

Further information

Prof. Dr. Martina Havenith-Newen, Department of Physical Chemistry II at the Ruhr-University Bochum, 447780 Bochum, Tel. 0234/32-24249, martina.havenith@rub.de

Prof. Dr. Dominik Marx, Department of Theoretical Chemistry at the Ruhr-University Bochum, 44780 Bochum, Tel. 0234/32-28083, dominik.marx@theochem.rub.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>