Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superbug's CPU revealed

04.06.2010
McMaster researchers discover chemical clue directing Staphylococcus aureus

McMaster University researchers have discovered a central controller or processing unit (CPU) of a superbug's weaponry.

An article on the breakthrough appears in the high-impact journal Science today.

The team from the Michael G. DeGroote Institute for Infectious Disease Research has revealed that a small chemical, made by the superbug Staphylococcus aureus and its drug-resistant forms, determines this disease's strength and ability to infect.

The bacteria is the cause for a wide range of difficult-to-treat human infectious diseases such as pneumonia, toxic-shock syndrome and flesh-eating diseases. It has become known as the superbug as it has become increasingly resistant to antibiotics and especially troublesome in hospitals.

The discovery will provide new options for fight back and disable the virulent bacteria.

"We've found that when these small chemicals in the bacteria are shut down, the bacteria is rendered non-functional and non-infectious," said Nathan Magarvey, principal investigator for the study and an assistant professor of biochemistry and biomedical sciences at McMaster. "We're now set on hacking into this pathogen and making its system crash."

To identify these "pathogen small molecule CPUs", the researchers used cutting-edge chemical mining tools to reveal the molecular wiring associated with their formation. Then, to uncover its function, the McMaster scientists shut off its synthesis, showing that the deadly pathogens had been tamed and unable to burst open red blood cells.

The McMaster team also collaborated with the University of Western Ontario and the University of Nebraska to further delve into how this "small molecule CPU" works and functions to engage Staphylococcus aureus in its destructive and harmful behaviours.

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>