Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super song learners

23.10.2013
Most songbirds learn their songs from an adult model, mostly from the father.

However, there are relatively large differences in the accuracy how these songs are copied. Researchers from the Max Planck Institute for Ornithology in Seewiesen now found in juvenile zebra finches a possible mechanism that is responsible for the differences in the intensity of song learning.


An adult zebra finch (male) with a juvenile male.

© MPI f. Ornithology/Leitner

They provided the nerve growth factor “BDNF” to the song control system in the brain. With this treatment the learning ability in juvenile males could be enhanced in such a way that they were able to copy the songs of the father as good as it had been observed in the best learners in a zebra finch nest.

The improvement of cognitive abilities plays an important role in the therapy of neurological and psychiatric diseases. In this context research focusses more and more on the protein BDNF (Brain Derived Neurotrophic Factor). BDNF is mainly responsible for the preservation, growth and differentiation of nerve cells. Moreover, from experiments in mice it is known that BDNF enhances the ability to solve complex cognitive tasks.

In a learning experiment with zebra finches, researchers from the Max Planck Institute for Ornithology in Seewiesen in collaboration with scientists from the Free University of Amsterdam could now show for the first time in songbirds that BDNF acts as cognitive enhancer. They investigated zebra finch brother pairs that grew up with their genetic parents.

In this setup juvenile birds will readily learn the songs from their fathers. However there are differences in the intensity of song learning among siblings of the same age. The worst learners have only a similarity of 20% with their fathers’ songs, whereas the best learners copy almost the entire songs of their fathers.

By now knowing the normal distribution of the learned songs within a zebra finch nest, as a next step the researchers were able to investigate the impact of BDNF on song learning. In one of the two brothers they enhanced the expression of BDNF in the song control system in the brain while the other brother did not get such a treatment. By analysing the songs the researchers found that those sons that received more BDNF had a higher similarity with the song of their fathers compared to normally reared juveniles. Remarkably, the learning efficiency in the BDNF-treated birds was as high as it has been previously observed in the best learners within the nest.

This was due to an earlier onset of syllable copying in BDNF-treated birds and these birds also copied more and sang fewer improvised syllables. Therefore it is likely that the presence of BDNF in the song control system could correct possible inaccuracies in the song learning process, state the scientists around Manfred Gahr, who is the senior author of the study.

Contact

Dr. Falk Dittrich
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-272
Email: dittrich@­orn.mpg.de
Dr. Stefan Leitner
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-421
Fax: +49 8157 932-209
Email: leitner@­orn.mpg.de
Original publication
Dittrich, F., ter Maat, A., Jansen, R.F., Pieneman, A., Hertel, M., Frankl-Vilches, C., Gahr, M.
Maximized song learning of juvenile male zebra finches following BDNF expression in the HVC

European Journal of Neuroscience, doi:10.1111/ejn.12329

Dr. Sabine Spehn | Max-Planck-Institut
Further information:
http://www.mpg.de/7580423/zebra-finches-song-learning

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>