Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Super” Enzyme Protects Against Dangers of Oxygen

30.01.2013
Just like a comic book super hero, you could say that the enzyme superoxide dismutase (SOD1) has a secret identity.

Since its discovery in 1969, scientists believed SOD1’s only role was to protect living cells against damage from free radicals. Now, researchers at the Johns Hopkins Bloomberg School of Public Health have discovered that SOD1 protects cells by regulating cell energy and metabolism. The results of their research were published January 17, 2013, in the journal Cell.

Transforming oxygen to energy for growth is key to life for all living cells, which happens either through respiration or fermentation. When oxygen is plentiful, respiration normally takes over; however certain cells fail to respire in spite of abundant oxygen and instead ferment, leading to uncontrolled cell growth—a hallmark of cancer.

Using the baker’s yeast S. cerevisiae as well as a human cell line, researchers Valeria C. Culotta, PhD, and colleague Amit Reddi from the Department of Biochemistry and Molecular Biology determined that SOD1 transmits signals from oxygen and glucose to repress respiration. This signaling is accomplished through SOD1 protection of another enzyme known as casein kinase 1-gamma (CK1ã), which is an important key to the switch between respiration and fermentation.

“SOD enzymes are present in virtually all living cells, from the most ancient bacteria to every cell in the human body,” explained Culotta. “I’ve been telling my students to think of SOD1 as a superhero. It not only defends cells from damaging free radicals, but also has a secret life as a guardian of cell energy and metabolism.”

“Our findings provide new clues as to how rapidly dividing cells—from yeast to human cancers—may escape the urge to respire and instead choose fermentation to promote rapid growth,” said Culotta.

“SOD1 has long been recognized as an important enzyme in protection from oxidative stress, but this work establishes an important new function for the enzyme in cellular metabolism,” said Vernon Anderson, PhD, of the National Institutes of Health’s National Institute of General Medical Sciences, which partly funded the study. “The results provide important insight into how SOD1 and oxygen radicals push cellular energy metabolism towards fermentation, a feature of some disease states, including cancer.”

“SOD1 Integrates Signals from Oxygen and Glucose to Repress Respiration” was written by Amit R. Reddi and Valeria C. Culotta.

The research was supported by the JHU National Institute for Environmental Health Sciences Center and from the National Institutes of Health grants GM050016 and GM093550.

Image courtesy of artist Clem Cizewski and Valeria Culotta.

Media contact: Tim Parsons, director of Public Affairs, at 410-955-7619 or tmparson@jhsph.edu

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>