Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Super” Enzyme Protects Against Dangers of Oxygen

30.01.2013
Just like a comic book super hero, you could say that the enzyme superoxide dismutase (SOD1) has a secret identity.

Since its discovery in 1969, scientists believed SOD1’s only role was to protect living cells against damage from free radicals. Now, researchers at the Johns Hopkins Bloomberg School of Public Health have discovered that SOD1 protects cells by regulating cell energy and metabolism. The results of their research were published January 17, 2013, in the journal Cell.

Transforming oxygen to energy for growth is key to life for all living cells, which happens either through respiration or fermentation. When oxygen is plentiful, respiration normally takes over; however certain cells fail to respire in spite of abundant oxygen and instead ferment, leading to uncontrolled cell growth—a hallmark of cancer.

Using the baker’s yeast S. cerevisiae as well as a human cell line, researchers Valeria C. Culotta, PhD, and colleague Amit Reddi from the Department of Biochemistry and Molecular Biology determined that SOD1 transmits signals from oxygen and glucose to repress respiration. This signaling is accomplished through SOD1 protection of another enzyme known as casein kinase 1-gamma (CK1ã), which is an important key to the switch between respiration and fermentation.

“SOD enzymes are present in virtually all living cells, from the most ancient bacteria to every cell in the human body,” explained Culotta. “I’ve been telling my students to think of SOD1 as a superhero. It not only defends cells from damaging free radicals, but also has a secret life as a guardian of cell energy and metabolism.”

“Our findings provide new clues as to how rapidly dividing cells—from yeast to human cancers—may escape the urge to respire and instead choose fermentation to promote rapid growth,” said Culotta.

“SOD1 has long been recognized as an important enzyme in protection from oxidative stress, but this work establishes an important new function for the enzyme in cellular metabolism,” said Vernon Anderson, PhD, of the National Institutes of Health’s National Institute of General Medical Sciences, which partly funded the study. “The results provide important insight into how SOD1 and oxygen radicals push cellular energy metabolism towards fermentation, a feature of some disease states, including cancer.”

“SOD1 Integrates Signals from Oxygen and Glucose to Repress Respiration” was written by Amit R. Reddi and Valeria C. Culotta.

The research was supported by the JHU National Institute for Environmental Health Sciences Center and from the National Institutes of Health grants GM050016 and GM093550.

Image courtesy of artist Clem Cizewski and Valeria Culotta.

Media contact: Tim Parsons, director of Public Affairs, at 410-955-7619 or tmparson@jhsph.edu

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>