Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sundown Syndrome-Like Symptoms in Fruit Flies May Be Due to High Dopamine Levels Changes in Flies Parallel Human Disorder

15.05.2012
Perelman School of Medicine at the University of Pennsylvania researchers have discovered a mechanism involving the neurotransmitter dopamine that switches fruit fly behavior from being active during the day (diurnal) to nocturnal.
This change parallels a human disorder in which increased agitation occurs in the evening hours near sunset and may also be due to higher than normal dopamine levels in the brain. Sundown syndrome occurs in older people with dementia or cognitive impairment.

Many geriatricians have noted an association between sundown syndrome and changes in the internal biological clock among people with dementia, observing disruptions in their sleep-wake cycles. The internal clock, which guides rhythms over a 24-hour day, is connected to how active humans are at different times of the day.

The lab of Amita Sehgal, PhD, professor of Neuroscience and a Howard Hughes Medical Institute investigator, found that in fruit flies dopamine acts to arouse flies through a protein called cryptochrome that normally functions as a photoreceptor. Flies, like humans, are typically diurnal. The findings were released online this week in Genes & Development.

Using a strain of fly that has a mutated Clock (Clk) gene and exhibits nocturnal behavior, the team found that increased night-time activity of the Clk mutant flies is associated with elevated dopamine signaling. Specifically, Clk mutant flies have increased levels of an enzyme used to make dopamine called tyrosine hydroxylase in fly brains. The night-time behavior also requires the circadian photoreceptor, cryptochrome (CRY), in specific cells of the fly brain. These cells also express CLK, as do others that may be responsible for the elevated dopamine.

“Our results suggest that typically the dopamine pathway and CRY promote acute arousal. They allow an animal to respond to acute stimulation by sensory stimuli with a transient increase in activity,” says Sehgal. “However, chronic, increased signaling of the pathway leads to nocturnal activity, most likely because both CRY and dopamine activity are dampened by light.” A switched behavioral cycle is the result.

Based upon previous research and the present study, the Sehgal team proposed that CRY is required for two distinct acute responses -- acute arousal, which presumably awakens the animal, and resetting of the circadian clock in response to a pulse of light. This would fit with evolutionary needs as, even when they’re sleeping, animals need to be able to respond to sudden changes in the environment. It appears that both arousal, as well as circadian responses, to such sudden stimulation require the same molecule, says Sehgal.
The researchers also note parallels to these findings in mammals. Dopamine in mammals regulates melanopsin, a pigment in the retina important to synchronizing circadian cycles, much like CRY does in flies. Light-sensitive melanopsin is required to induce sleep in nocturnal rodents, who sleep during the day. In contrast, in humans, who are diurnal, mistimed elevated dopamine is linked to increased agitation and sleep disturbances in the early evening – the so-called sundown syndrome. “Although there are differences in CRY signaling between flies and humans, it is interesting to note that sundown syndrome is treated with medications that decrease the activity of dopamine,” says Sehgal.

She notes that the next step in this work would be to determine the molecular connection between dopamine and CRY and also to identify the mechanism by which CRY promotes arousal.

The research was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under grants 1R01NS048471 and 1R56NS048471. Co-authors in addition to Sehgal are Shailesh Kumar and Dechun Chen, both from Penn.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | Newswise Science News
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>