Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sundown Syndrome-Like Symptoms in Fruit Flies May Be Due to High Dopamine Levels Changes in Flies Parallel Human Disorder

Perelman School of Medicine at the University of Pennsylvania researchers have discovered a mechanism involving the neurotransmitter dopamine that switches fruit fly behavior from being active during the day (diurnal) to nocturnal.
This change parallels a human disorder in which increased agitation occurs in the evening hours near sunset and may also be due to higher than normal dopamine levels in the brain. Sundown syndrome occurs in older people with dementia or cognitive impairment.

Many geriatricians have noted an association between sundown syndrome and changes in the internal biological clock among people with dementia, observing disruptions in their sleep-wake cycles. The internal clock, which guides rhythms over a 24-hour day, is connected to how active humans are at different times of the day.

The lab of Amita Sehgal, PhD, professor of Neuroscience and a Howard Hughes Medical Institute investigator, found that in fruit flies dopamine acts to arouse flies through a protein called cryptochrome that normally functions as a photoreceptor. Flies, like humans, are typically diurnal. The findings were released online this week in Genes & Development.

Using a strain of fly that has a mutated Clock (Clk) gene and exhibits nocturnal behavior, the team found that increased night-time activity of the Clk mutant flies is associated with elevated dopamine signaling. Specifically, Clk mutant flies have increased levels of an enzyme used to make dopamine called tyrosine hydroxylase in fly brains. The night-time behavior also requires the circadian photoreceptor, cryptochrome (CRY), in specific cells of the fly brain. These cells also express CLK, as do others that may be responsible for the elevated dopamine.

“Our results suggest that typically the dopamine pathway and CRY promote acute arousal. They allow an animal to respond to acute stimulation by sensory stimuli with a transient increase in activity,” says Sehgal. “However, chronic, increased signaling of the pathway leads to nocturnal activity, most likely because both CRY and dopamine activity are dampened by light.” A switched behavioral cycle is the result.

Based upon previous research and the present study, the Sehgal team proposed that CRY is required for two distinct acute responses -- acute arousal, which presumably awakens the animal, and resetting of the circadian clock in response to a pulse of light. This would fit with evolutionary needs as, even when they’re sleeping, animals need to be able to respond to sudden changes in the environment. It appears that both arousal, as well as circadian responses, to such sudden stimulation require the same molecule, says Sehgal.
The researchers also note parallels to these findings in mammals. Dopamine in mammals regulates melanopsin, a pigment in the retina important to synchronizing circadian cycles, much like CRY does in flies. Light-sensitive melanopsin is required to induce sleep in nocturnal rodents, who sleep during the day. In contrast, in humans, who are diurnal, mistimed elevated dopamine is linked to increased agitation and sleep disturbances in the early evening – the so-called sundown syndrome. “Although there are differences in CRY signaling between flies and humans, it is interesting to note that sundown syndrome is treated with medications that decrease the activity of dopamine,” says Sehgal.

She notes that the next step in this work would be to determine the molecular connection between dopamine and CRY and also to identify the mechanism by which CRY promotes arousal.

The research was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under grants 1R01NS048471 and 1R56NS048471. Co-authors in addition to Sehgal are Shailesh Kumar and Dechun Chen, both from Penn.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>