Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let the Sun Shine in

15.09.2011
Nanorods made of fullerenes improve performance of polymer solar cells

The biggest obstacle to making use of solar energy has been the excessively high price of solar cells made of inorganic semiconductors. In contrast, solar cells based on semiconducting polymers are affordable, light, thin, and flexible—but their performance has been lacking.

A team led by Chain-Shu Hsu at the National Chaio Tung University and Yuh-Lin Wang at Academia Sinica in Taiwan has now developed a new approach that uses fullerene nanorods to significantly increase the effectiveness of polymer-based solar cells. They introduce their work in the journal Angewandte Chemie.

In the photoactive layer of a solar cell, light energy sets electrons free. This leaves behind positively charged gaps or “holes”. Electrons and holes must be separated quickly and efficiently, or they recombine and reduce the power of the solar cell. The efficiency of a solar cell thus depends on how well the resulting charge is directed away and transported to the electrodes.

In polymer solar cells, it is possible to attain more efficient charge separation through the addition of acceptors, such as fullerenes, which take up electrons. One highly promising concept is to embed the acceptor molecules in a disordered matrix made of photoactive polymer chains. The boundary surface between the two components is thus spread over the entire layer. This construct is known as a “bulk-hetero contact”. After charge separation, the electrons and holes are located in different molecular systems, which transport them selectively to opposite electrodes.

The problem is that the two materials are not evenly distributed. The travel pathways for the charges are thus disordered, allowing holes and electrons to encounter each other easily. In addition, charge-separated islands can occur. The solution would be an “ordered bulk-hetero contact”, a periodic structure of vertically directed, interpenetrating regions of both materials. Electrons and holes would then have straight pathways that do not cross. However, it has previously not been possible to produce any effective photolayer using this principle, because the components are not molecularly intermixed, making the electron pathways too long to produce effective charge separation.

The Taiwanese researchers decided to combine the two structural principles. By using a nano-casting process, they produced a layer of vertically oriented nanorods from a cross-linking polymeric fullerene material. The spaces between the rods were filled with a mixture made from a photoactive polymer and a fullerene. This layer ensures effective charge separation, and the interpenetration of the fullerene nanorods ensures ordered – and thus effective—charge transport. Solar cells made with this novel combined photolayer are stable and achieve amazingly high performance.

Author: Chain-Shu Hsu, National Chiao Tung University, Hsin-Chu (Taiwan), http://www.ac.nctu.edu.tw/people/bio.php?PID=33
Title: Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of Vertically Aligned, Cross-Linked Fullerene Nanorods

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201103782

Chain-Shu Hsu | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>