Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suicide gene therapy kills prostate tumor cells

14.12.2015

Results from a long-term clinical trial conducted by cancer researchers at Houston Methodist Hospital show that combining radiation treatment with "suicide gene therapy," a technique in which prostate cancer cells are genetically modified so they signal a patient's immune system to attack them, provides a safe and effective one-two punch against the disease.

The researchers compared two arms of patients and report high five-year overall survival rates of 97 percent and 94 percent, respectively. That's a five to 20 percent improvement for survival over historical studies. These findings are in the Dec. 12 online issue of the Journal of Radiation Oncology (JRO).


The image on the left shows high-grade aggressive prostate cancer before treatment. the image on the right shows no evidence of cancer after combined gene therapy and radiotherapy.

Credit: Houston Methodist

Sixty-six prostate cancer patients participated in the Phase II clinical trial between 1999 and 2003 and were split into two groups. One group with cancer cells confined to the prostate, designated Arm A, received only radiotherapy while the other with a more aggressive prostate cancer, Arm B, received both radiation and hormonal therapies.

Patients in Arm A received the experimental gene therapy twice during the study, while the Arm B group received the treatment three times.

"We strategically used an adenovirus, similar to the one that causes the common cold, to carry the therapy agent--a herpes virus gene that produces the enzyme thymidine kinase, or TK--directly into the tumor cells," said E. Brian Butler, M.D., chair of the Department of Radiation Oncology at Houston Methodist and senior author on the JRO paper.

"Once the herpes virus gene was delivered and it started manufacturing TK, we gave patients a commonly used anti-herpes drug, valacyclovir. The combination attacked the herpes DNA, and the TK-producing tumor cells self-destructed, which is why the procedure is called 'suicide gene therapy.'"

Butler said that once the activated valacyclovir (trade name: Valtrex) starts destroying tumor cells, it also alerts the patient's immune system, previously unaware of the cancer's presence, that it is time to launch a massive attack.

"We have created a vaccine with the patient's own cancer cells, a treatment that complements, and may even enhance, what we can achieve with traditional radiation and hormonal therapies," said Butler, professor of radiation oncology, Weill Cornell Medicine.

According to the results reported in the JRO paper, the long-term outcome for prostate cancer patients receiving gene therapy in combination with radiotherapy with or without hormonal therapy is promising.

The 62 patients in both arms who completed the clinical trial had remarkably high five-year freedom from failure rates, meaning no indication by biochemical testing of cancer recurrence, of 94 percent and 91 percent, respectively. Prostate biopsies performed at 24 months after completion of treatment were negative in 83 percent of Arm A patients and 79 percent of Arm B patients.

For all evaluative factors, the outcomes were remarkably higher than those achieved with radiotherapy alone (in data taken from historical studies used as controls).

"This is extremely pleasing to us, considering we had patients enrolled in our protocol after other physicians deemed them incurable," said Bin Teh, M.D., vice chair of Houston Methodist's Department of Radiation Oncology and lead author on the JRO paper. "We firmly believe this will be a viable treatment strategy."

Adding to the impressive therapeutic results, Teh said, is the fact that the majority of patients in the clinical trial experienced little or no side effects or complications. A Phase III patient trial, the final safety and efficacy evaluation for the in-situ immunomodulatory gene therapy before it can be approved by the Food and Drug Administration, is already underway. Prostate cancer is the most common cancer in men and causes significant mortality.

###

The researchers who collaborated with Butler and Teh on the Journal of Radiation Oncology paper were: Hiromichi Ishiyama, M.D., Ph.D., Kitasato University School of Medicine (Sagamilhara, Kanagawa, Japan); Wei-yuan Mai, M.D., Michael E. DeBakey VA Medical Center (Houston, Texas); and Timothy Thompson, Ph.D., The University of Texas MD Anderson Cancer Center (Houston, Texas).

The work was supported by grants from the National Cancer Institute, the Houston Methodist Hospital Foundation and the General Clinical Research Center.

To speak with E. Brian Butler, M.D., or Bin Teh, M.D., contact Gale Smith, Houston Methodist, at 281.627.0439 or gsmith@houstonmethodist.org. For more information about Houston Methodist, visit houstonmethodist.org. Follow us on Twitter and Facebook or visit our blog.

B. Teh, H. Ishiyama, W-Y. Mai, T. Thompson, and E.B. Butler. Long-term Outcome of a Phase II Trial using Immunomodulatory In Situ Gene Therapy in Combination with Intensity-Modulated Radiotherapy with or without Hormonal Therapy in the Treatment of Prostate Cancer. Journal of Radiation Oncology; Published online Dec. 12, 2015 (DOI 10.1007/s13566-015-0239-y).

Gale Smith | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>