Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar solution makes tissues see-through

24.06.2013
Japanese researchers have developed a new sugar and water-based solution that turns tissues transparent in just three days, without disrupting the shape and chemical nature of the samples. Combined with fluorescence microscopy, this technique enabled them to obtain detailed images of a mouse brain at an unprecedented resolution.

The team from the RIKEN Center for Developmental biology reports their finding today in Nature Neuroscience.


Japanese researchers have developed a new sugar and water-based solution called SeeDB that turns tissues transparent in just three days, without disrupting the shape and chemical nature of the samples. Combined with fluorescence microscopy, this technique enabled them to obtain detailed images of a mouse brain at an unprecedented resolution.

Credit: RIKEN

Over the past few years, teams in the USA and Japan have reported a number of techniques to make biological samples transparent, that have enabled researchers to look deep down into biological structures like the brain.

"However, these clearing techniques have limitations because they induce chemical and morphological damage to the sample and require time-consuming procedures," explains Dr. Takeshi Imai, who led the study.

SeeDB, an aqueous fructose solution that Dr. Imai developed with colleagues Drs. Meng-Tsen Ke and Satoshi Fujimoto, overcomes these limitations.

Using SeeDB, the researchers were able to make mouse embryos and brains transparent in just three days, without damaging the fine structures of the samples, or the fluorescent dyes they had injected in them.

They could then visualize the neuronal circuitry inside a mouse brain, at the whole-brain scale, under a customized fluorescence microscope without making mechanical sections through the brain.

They describe the detailed wiring patterns of commissural fibers connecting the right and left hemispheres of the cerebral cortex, in three dimensions, for the first time.

Dr. Imai and colleagues report that they were also able to visualize in three dimensions the wiring of mitral cells in the olfactory bulb, which is involved the detection of smells, at single-fiber resolution.

"Because SeeDB is inexpensive, quick, easy and safe to use, and requires no special equipment, it will prove useful for a broad range of studies, including the study of neuronal circuits in human samples," explain the authors.

Dr. Takeshi Imai is available for interviews over the phone at +81(0) 78-306-3376 or by email at imai@cdb.riken.jp.

Alternatively, for more information please contact:

Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Mobile phone: +81-(0)808895-2136
Email: pr@riken.jp
Pictures and the original journal research article in Nature Neuroscience are available on request.

Reference

Meng-Tsen Ke, Satoshi Fujimoto, and Takeshi Imai

"SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction"

Nature Neuroscience, 2013 doi: 10.1038/nn.3447
About RIKEN
RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technical journals, covering a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a reputation for scientific excellence worldwide.

Website: http://www.riken.jp/en/ Find us on Twitter at @riken_en
About the Center for Developmental Biology
The RIKEN Center for Developmental Biology (CDB) was launched in April 2000 to advance research in the fields of animal development and regeneration and contribute to areas of clinical medicine that can benefit from such research. The CDB is dedicated to developing a better understanding of fundamental processes of animal development at the molecular and cell biological level, the more complex phenomena involved in organogenesis as well as the biology of stem cells and regeneration. By elucidating these processes researchers working at CDB hope to improve the effectiveness of regenerative medicine, for the benefit of society.

Juliette Savin | EurekAlert!
Further information:
http://www.riken.jp
http://www.riken.jp/en/

Further reports about: Nature Immunology Neuroscience RIKEN mouse embryo sugar synthetic biology

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>