Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Sugar Molecules Influence Embryonic Development

18.12.2013
Heidelberg researchers show that mannose bound to proteins is essential to the formation of cell-to-cell contacts

Sugar molecules are crucial to cell adhesion, the specific interaction between cells, and hence to the development of the embryo. This is the conclusion reached by Prof. Dr. Sabine Strahl and her team at the Centre for Organismal Studies at Heidelberg University.


Early phase of embryonic development
Image source: M. Loibl and S. Strahl

Their research shows that a special form of glycosylation, in which sugar molecules bind to proteins, is essential to the function of E-cadherin-mediated cell adhesion. According to Prof. Strahl, differentiation of the embryo is impossible if this protein modification is lacking. The results of the research were published in the journal “PNAS”.

In the early phase of embryonic development, the fertilised egg divides, forming a ball of loosely bound cells called the morula. For a compact cell packet and finally a complex organism to develop, the cells first need to bind tightly together.

Cell adhesion molecules like E-cadherin are essential in this process. Cadherins are proteins that enable tissues to bind together and cells to communicate with one another. In all living organisms, numerous sugar molecules are bound to proteins after biosynthesis. This process, called glycosylation, is critical for growth and development. “The lack of certain sugar residues can lead to serious congenital development disorders in humans,” explains Prof. Strahl.

The research team was now able to demonstrate in the mouse model why a certain type of glycosylation, called protein O-mannosylation, is critical to early embryonic development. The researchers proved that the E-cadherin protein carries mannose, sugar molecules present on the surface of the embryonic cells as of the four-cell stage of development. If biosynthesis of these E-cadherin-bound sugar residues is inhibited, functional cell connections cannot form and the cells cannot bind together with any stability. This leads to death of the embryo even before it can embed itself in the womb.

“The causal relationship we demonstrated between the sugar residues and cadherin-mediated cell adhesion shows that this protein modification is much more important than originally believed,” says Sabine Strahl. “In view of the important functions of cadherins in development processes in vertebrates as well as in tumour metastasis, our work is extremely relevant in many areas of the life sciences and medical research.” Based on the results of their research, the Heidelberg scientists now plan to investigate the significance of this protein modification in the genesis of cancer.

Their research was funded by the “Glycobiology/Glycomics” programme of the Baden-Württemberg Foundation. Scientists from the Gene Center of the University of Munich (LMU) also contributed to the research work.

Internet information:
http://www.cos.uni-heidelberg.de/index.php/s.strahl?l=_e
Original publication:
M. Lommel, P.R. Winterhalter, T. Willer, M. Dahlhoff, M.R. Schneider, M.F. Bartels, I. Renner-Müller, T. Ruppert, E. Wolf, and S. Strahl: Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion, PNAS (2 December 2013), doi: 10.1073/pnas.1316753110
Caption:
In the early phase of embryonic development, the fertilised egg divides and within two days forms a ball of loosely bound cells called the morula. The bonds between these cells are fortified, resulting in a compact cell packet, the blastocyst. In the mouse, sugar residues bound to E-cadherin (mannose; green) can be detected on the surface of the embryonic cells starting at the four-cell stage. If their biosynthesis is inhibited, the cells cannot form stable bonds during the transition from the morula to the blastula stage. A blastocyst cannot be formed and the faulty embryos are resorbed.

Image source: M. Loibl and S. Strahl

Contact:
Prof. Dr. Sabine Strahl
Centre for Organismal Studies (COS)
Phone +49 6221 54-6286
sabine.strahl@cos.uni-heidelberg.de
Communications and Marketing
Press Office, phone: 49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.cos.uni-heidelberg.de/index.php/s.strahl?l=_e

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>