Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar Coating Reveals Black Death

18.07.2013
Plague detection through anti-carbohydrate antibodies

Even today, the lives of humans and animals are claimed by plague. A new antibody-based detection method can be used to reliably and sensitively identify plague in patient serum and other biological samples.

The antibody specifically recognizes a particular carbohydrate structure found on the cell surfaces of the bacterium that causes plague, as reported by German researchers in the journal Angewandte Chemie.

“Black death” took the lives of over 200 million humans over the course of three pandemics in the last 1500 years. More recently, cases of plague have been detected in Africa and Asia. Because of the high danger of transmission and the severity of the infection, Yersinia pestis, the pathogen behind the plague, is classified as a category A biological weapon. When inhaled as an aerosol it causes pneumonic plague, which usually results in death if it is not treated fast. Rapid and reliable diagnosis is thus critical.

“Currently, Y. pestis is detected by polymerase chain reaction based assays or traditional phenotyping,” explains Peter Seeberger of the Max Planck Institute of Colloids and Interfaces in Potsdam. “These methods of detection are reliable, but they are also often complex, expensive, and slow.”

The recognition of surface proteins by antibodies is a highly promising and less complicated alternative method for the detection of plague, but it has a high failure rate and low selectivity with regard to related strains of bacteria.

Seeberger and his team have now found a way around this problem: Gram-negative bacteria like Y. pestis have molecules called lipopolysaccharides (LPSs), made of fat and carbohydrate components, on their outer cell membranes. “The inner core of the Yersinia LPS has a unique structure that differs from that of other Gram-negative bacteria,” says Seeberger. “This could be a suitable region for detection by means of specific antibodies for rapid point-of-care diagnosis.”

Because isolation of Y. pestis LPS is a laborious undertaking, the researchers chose to synthetically produce one typical motif from the molecule, a segment consisting of three sugar molecules, each of which has a framework of seven carbon atoms. The researchers attached these segments, called triheptoses, to diphtherietoxoid CRM197, which acts as a carrier protein. This protein is a typical component of licensed vaccine formulations and triggers the formation of antibodies. The researchers immunized mice and isolated antibodies from their blood.

Various immunoassays demonstrated that the resulting antibodies detect the plague pathogen with high selectivity and sensitivity, and selectively differentiate between Y. pestis and other Gram-negative bacteria. The researchers hope to be able to use this to develop applications for patient diagnostics. The development of corresponding tests is the focus of their current research.

About the Author
Prof. Peter Seeberger is Director at the Max Planck Institute of Colloids and Interfaces in Potsdam and Professor at the Freie Universität Berlin. Since 2003, he has served as an affiliate professor at the Burnham Institute in La Jolla, CA (USA). His main specialty is synthetic carbohydrate chemistry. His research interests focus on the role of complex carbohydrates and glycoconjugates in information transfer in biological systems. His group has developed new methods for the automated solid-phase synthesis of complex carbohydrates and glycosaminoglycans that serve as molecular tools.

Author: Peter H. Seeberger, Max-Planck Institute of Colloids and Interfaces, Potsdam (Germany), http://www.mpikg.mpg.de/177410/employee_page?employee_id=22356

Title: Plague Detection by Anti-carbohydrate Antibodies
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301633

Peter H. Seeberger | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.mpikg.mpg.de/177410/employee_page?employee_id=22356

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>