Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar Coating Reveals Black Death

18.07.2013
Plague detection through anti-carbohydrate antibodies

Even today, the lives of humans and animals are claimed by plague. A new antibody-based detection method can be used to reliably and sensitively identify plague in patient serum and other biological samples.

The antibody specifically recognizes a particular carbohydrate structure found on the cell surfaces of the bacterium that causes plague, as reported by German researchers in the journal Angewandte Chemie.

“Black death” took the lives of over 200 million humans over the course of three pandemics in the last 1500 years. More recently, cases of plague have been detected in Africa and Asia. Because of the high danger of transmission and the severity of the infection, Yersinia pestis, the pathogen behind the plague, is classified as a category A biological weapon. When inhaled as an aerosol it causes pneumonic plague, which usually results in death if it is not treated fast. Rapid and reliable diagnosis is thus critical.

“Currently, Y. pestis is detected by polymerase chain reaction based assays or traditional phenotyping,” explains Peter Seeberger of the Max Planck Institute of Colloids and Interfaces in Potsdam. “These methods of detection are reliable, but they are also often complex, expensive, and slow.”

The recognition of surface proteins by antibodies is a highly promising and less complicated alternative method for the detection of plague, but it has a high failure rate and low selectivity with regard to related strains of bacteria.

Seeberger and his team have now found a way around this problem: Gram-negative bacteria like Y. pestis have molecules called lipopolysaccharides (LPSs), made of fat and carbohydrate components, on their outer cell membranes. “The inner core of the Yersinia LPS has a unique structure that differs from that of other Gram-negative bacteria,” says Seeberger. “This could be a suitable region for detection by means of specific antibodies for rapid point-of-care diagnosis.”

Because isolation of Y. pestis LPS is a laborious undertaking, the researchers chose to synthetically produce one typical motif from the molecule, a segment consisting of three sugar molecules, each of which has a framework of seven carbon atoms. The researchers attached these segments, called triheptoses, to diphtherietoxoid CRM197, which acts as a carrier protein. This protein is a typical component of licensed vaccine formulations and triggers the formation of antibodies. The researchers immunized mice and isolated antibodies from their blood.

Various immunoassays demonstrated that the resulting antibodies detect the plague pathogen with high selectivity and sensitivity, and selectively differentiate between Y. pestis and other Gram-negative bacteria. The researchers hope to be able to use this to develop applications for patient diagnostics. The development of corresponding tests is the focus of their current research.

About the Author
Prof. Peter Seeberger is Director at the Max Planck Institute of Colloids and Interfaces in Potsdam and Professor at the Freie Universität Berlin. Since 2003, he has served as an affiliate professor at the Burnham Institute in La Jolla, CA (USA). His main specialty is synthetic carbohydrate chemistry. His research interests focus on the role of complex carbohydrates and glycoconjugates in information transfer in biological systems. His group has developed new methods for the automated solid-phase synthesis of complex carbohydrates and glycosaminoglycans that serve as molecular tools.

Author: Peter H. Seeberger, Max-Planck Institute of Colloids and Interfaces, Potsdam (Germany), http://www.mpikg.mpg.de/177410/employee_page?employee_id=22356

Title: Plague Detection by Anti-carbohydrate Antibodies
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301633

Peter H. Seeberger | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.mpikg.mpg.de/177410/employee_page?employee_id=22356

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>