Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar Coating Reveals Black Death

18.07.2013
Plague detection through anti-carbohydrate antibodies

Even today, the lives of humans and animals are claimed by plague. A new antibody-based detection method can be used to reliably and sensitively identify plague in patient serum and other biological samples.

The antibody specifically recognizes a particular carbohydrate structure found on the cell surfaces of the bacterium that causes plague, as reported by German researchers in the journal Angewandte Chemie.

“Black death” took the lives of over 200 million humans over the course of three pandemics in the last 1500 years. More recently, cases of plague have been detected in Africa and Asia. Because of the high danger of transmission and the severity of the infection, Yersinia pestis, the pathogen behind the plague, is classified as a category A biological weapon. When inhaled as an aerosol it causes pneumonic plague, which usually results in death if it is not treated fast. Rapid and reliable diagnosis is thus critical.

“Currently, Y. pestis is detected by polymerase chain reaction based assays or traditional phenotyping,” explains Peter Seeberger of the Max Planck Institute of Colloids and Interfaces in Potsdam. “These methods of detection are reliable, but they are also often complex, expensive, and slow.”

The recognition of surface proteins by antibodies is a highly promising and less complicated alternative method for the detection of plague, but it has a high failure rate and low selectivity with regard to related strains of bacteria.

Seeberger and his team have now found a way around this problem: Gram-negative bacteria like Y. pestis have molecules called lipopolysaccharides (LPSs), made of fat and carbohydrate components, on their outer cell membranes. “The inner core of the Yersinia LPS has a unique structure that differs from that of other Gram-negative bacteria,” says Seeberger. “This could be a suitable region for detection by means of specific antibodies for rapid point-of-care diagnosis.”

Because isolation of Y. pestis LPS is a laborious undertaking, the researchers chose to synthetically produce one typical motif from the molecule, a segment consisting of three sugar molecules, each of which has a framework of seven carbon atoms. The researchers attached these segments, called triheptoses, to diphtherietoxoid CRM197, which acts as a carrier protein. This protein is a typical component of licensed vaccine formulations and triggers the formation of antibodies. The researchers immunized mice and isolated antibodies from their blood.

Various immunoassays demonstrated that the resulting antibodies detect the plague pathogen with high selectivity and sensitivity, and selectively differentiate between Y. pestis and other Gram-negative bacteria. The researchers hope to be able to use this to develop applications for patient diagnostics. The development of corresponding tests is the focus of their current research.

About the Author
Prof. Peter Seeberger is Director at the Max Planck Institute of Colloids and Interfaces in Potsdam and Professor at the Freie Universität Berlin. Since 2003, he has served as an affiliate professor at the Burnham Institute in La Jolla, CA (USA). His main specialty is synthetic carbohydrate chemistry. His research interests focus on the role of complex carbohydrates and glycoconjugates in information transfer in biological systems. His group has developed new methods for the automated solid-phase synthesis of complex carbohydrates and glycosaminoglycans that serve as molecular tools.

Author: Peter H. Seeberger, Max-Planck Institute of Colloids and Interfaces, Potsdam (Germany), http://www.mpikg.mpg.de/177410/employee_page?employee_id=22356

Title: Plague Detection by Anti-carbohydrate Antibodies
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301633

Peter H. Seeberger | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.mpikg.mpg.de/177410/employee_page?employee_id=22356

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>