Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar Battles Oil Spills

12.08.2010
Gelators based on natural sugar compounds bind oil on water surfaces

The environment has often suffered from the catastrophic effects of an oil spill, the most recent example being the oil spill in the Gulf of Mexico. The search for ways to remove oil from polluted water is therefore urgent.

US scientists working with George John have now developed a novel gelator that solidifies the oil into a gel from which it can easily be later reclaimed. As the scientists from the City College of New York and the University of Maryland report in the journal Angewandte Chemie, their gel is based on compounds synthesized from natural sugars.

All previously developed substances meant to selectively remove spilled oil from water and contain it have various disadvantages. These substances include dispersants that emulsify the oil, solid powders that adsorb the oil, and gelators that solidify the oil into a gel. In the past, polymers were primarily used, though they were difficult to mix with viscous types of oil and the retrieval of the bound oil was a very complex process.

John and his colleagues propose a new class of gelators based on naturally occurring sugar alcohols. John lists the advantages, “They are inexpensive, easy to produce, nontoxic, and biodegradable.” Gelators are constructed so that their molecules aggregate through a self-organization process into a three-dimensional network of fibers. This network sucks up the oil molecules and swells into a gel with an enormous capacity.

The researchers mixed different types of oil—ranging from crude oil to diesel, gasoline, and organic solvents—with water and added a few drops of the new gelator. This immediately formed a gel that separated from the water phase. The gel became so solid that it closed off the reaction flask like a cork. The flask could be inverted without any spillage of liquid. “In case of an oil spill, it would be relatively easy to collect the gel from the surface of the water,” says John. Simple distillation under vacuum is all that is needed to fully release oil from the gel. After separation, both the oil and the gelator are ready to be used again.

“We are optimistic that our sugar-based gelators provide an approach for the development of new materials to combat oil slicks on water, says John.

Author: George John, City College of New York (USA), http://www.sci.ccny.cuny.edu/~john/index.html

Title: Sugar-Derived Phase-Selective Molecular Gelators as Model Solidifiers for Oil Spills

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201002095

George John | Angewandte Chemie
Further information:
http://www.sci.ccny.cuny.edu/~john/index.html
http://pressroom.angewandte.org
http://dx.doi.org/10.1002/anie.201002095

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>