Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Succulent plants waited for cool, dry Earth to make their mark

04.05.2011
Between 5 and 10 million years ago, the landscape on Earth changed dramatically.

Brown University biologists and colleagues have determined that cacti exploded onto the global scene then, about the same geologic time as other succulent plants and tropical grasses.

The trigger: A global period marked by cooling and increaed aridity, possibly with lowered atmospheric carbon-dioxide levels. Their findings appear in the Proceedings of the National Academy of Sciences.

The cactus, stalwart of the desert, has quite a story to tell about the evolution of plant communities found the world over.

In a paper published in the online edition of the Proceedings of the National Academy of Sciences, Brown University biologists and colleagues have discovered that the rapid speciation of cacti occurred between 5 and 10 million years ago and coincided with species explosions by other succulent plant groups around the world. The researchers propose that a prolonged dry spell and possibly lower levels of atmospheric carbon dioxide during that time, known as the late Miocene, opened habitat that contributed to the rise of these plants and a broad vegetative makeover on Earth.

“The cacti, as a group, have been around for a while, but most of the species diversity that we see today was generated really recently,” said Monica Arakaki, a postdoctoral researcher at Brown and the paper’s lead author.

The Brown team and colleagues from Oberlin College and the University of Zurich, Switzerland, were interested primarily in dating the origins of the cacti (scientific name Cactaceae). The team sequenced the chloroplast genomes (the organelles inside plant leaves that engineer photosynthesis) for a dozen cacti and their relatives and combined their new genomic data with existing genomes to build a phylogeny, or evolutionary tree, for angiosperms, the genealogical line of flowering plants that represents roughly 90 percent of all plants worldwide. From there, the scientists deduced that Cactaceae first diverged from its angiosperm relatives roughly 35 million years ago but didn’t engage in rapid speciation for at least another 25 million years.

“Cacti were actually present on the landscape for millions of years — looking like cacti and acting like cacti — before they began their major diversification,” said Erika Edwards, assistant professor of biology in the Department of Ecology and Evolutionary Biology at Brown and corresponding author on the paper.

The team then sifted through the literature on the timing of diversification in other succulents from regions around the globe. Succulents include aloes, the agaves of North America, the ice plants of South Africa and other lineages. Their comfort zone is in water-limited climates, and they have adapted physical characteristics to cope in those locales, such as shallow root systems, specialized water-storing tissue and exchanging gas at night, when it is cooler and less humid and so less water is lost. What struck the researchers was that all the succulent lineages, across habitats and continents, underwent major speciation between 5 and 10 million years ago, during roughly the same time period as the cacti.

C4 grasses, the tropical grasses that are now up to 20 percent of our planet’s vegetative covering, burst onto the scene as well during this same window of time.

This must be more than a coincidence, the researchers thought. “It isn’t overly surprising that most of the standing cactus diversity is relatively young. But when you put these species radiations in the context of all the other changes in plant communities that were happening at that very moment, all over the world, it begs some sort of global environmental driver,” Edwards said.

The most plausible causes, the scientists thought, were a drying out of the planet and lowering of atmospheric carbon-dioxide levels. A wealth of research involving oxygen isotopes from a deep-sea organism showed the Earth underwent a drop in temperature, which the researchers believe led to reduced rainfall and increased aridity worldwide.

The carbon-dioxide link is more nuanced and controversial. The authors highlight one study that inferred atmospheric CO2 levels spiraled downward beginning roughly 15 million years ago. Combined with global cooling, “a drop in CO2 concentration would therefore immediately expand the ecological space in which drought-adapted succulent plants, with their high photosynthetic water use efficiency, would be competitive,” the authors write.

“We suggest that a rapid expansion of available habitat (rather than any particular new ‘key’ innovation) during the late Miocene was a primary driver of the global diversification of plant lineages already possessing a preadapted succulent syndrome,” the researchers write. “Against a backdrop of increasing global aridity, a sharp CO2 decline is a plausible driver of the simultaneous expansion of C4 grasslands, the clustering of new C4 origins, and the diversification of succulent lineages.”

Contributing authors include postdoctoral research associate Pascal-Antoine Christin, graduate student R. Matthew Ogburn, and undergraduate student Elizabeth Spriggs, all of Brown; Reto Nyffeler and Anita Lendel from the University of Zurich; Urs Eggli from the Succulent Plant Collection in Zurich; and Michael Moore from Oberlin.

The U.S. National Science Foundation funded the research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>