Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First successful use of expanded umbilical-cord blood units to treat leukemia

18.01.2010
Scientists at Fred Hutchinson Cancer Research Center have cleared a major technical hurdle to making umbilical-cord-blood transplants a more widely-used method for treating leukemia and other blood cancers.

In a study published in the Jan.17 edition of Nature Medicine, Colleen Delaney, M.D., and colleagues describe the first use of a method to vastly expand the number of stem/progenitor cells from a unit of cord blood in the laboratory that were then infused into patients resulting in successful and rapid engraftment.

The relatively small number of stem cells in cord blood units (about one-10th the number a patient receives from a conventional transplant) has been a reason that cord blood transplants take much longer to engraft than standard stem cell transplants from donors. The longer the engraftment takes, the higher the risk is that immunocompromised patients will acquire life-threatening infections because they have essentially no white blood cells to fight them.

Despite the numbers disadvantage, cord blood is a promising source of stem cells to replace diseased blood and immune systems in stem cell transplantation because the donated cells don't need to be perfectly matched to the patient. The lack of a suitable match is why about 30 percent of patients overall who need a stem cell transplant to treat cancers such as leukemia can't find suitable donors. Among racial-minority patients the number who cannot find suitable donors is about 95 percent.

The use of expanded cord blood cells could decrease the risk of early death, which is higher in patients receiving a cord-blood transplant without expanded cells. Further clinical trials and technological improvements are needed to verify the efficacy of cord blood transplants that use expanded cells, the authors said.

"The real ground-breaking aspect of this research is that we have shown that you can manipulate stem/progenitor cells in the lab with the goal of increasing their numbers. When given to a person, these cells can rapidly give rise to white blood cells and other components of the blood system," said Delaney, an assistant member in the Hutchinson Center's Clinical Research Division and an assistant professor in the Department of Pediatrics at the University of Washington School of Medicine

The stem cell expansion was possible by activating the Notch signaling pathway in the stem cells. This approach was developed by Irwin Bernstein, M.D., a member of the Hutchinson Center's Clinical Research Division, and was initially published in Nature Medicine in 2000. A decade of work ensued resulting in successful translation of the laboratory findings to patients in a clinical setting.

Delaney and colleagues built upon Bernstein's earlier work by engineering a protein that can be used in the lab to activate the Notch signaling pathway in stem cells and manipulate the cells in tissue culture to expand in quantity.

This successful laboratory method for expanding the number of stem/progenitor cells from a single unit of cord blood resulted in an average 164-fold increase in the number of CD34+ cells, a type of hematopoietic stem cell. Such cells are multipotent and give rise to all types of blood cells. Delaney said that a typical unit of cord blood usually contains less than 200,000 stem cells per kilogram of body weight of the recipient patient. In contrast, the expanded units contained on average 6 million CD34+ cells per kilogram of body weight, which is on par with conventional transplant sources.

The current study also describes the outcomes of 10 patients in an ongoing phase 1 clinical trial who received two units of cord blood to treat high-risk, acute leukemia. Each patient received one unit of non-manipulated cord blood and one in which the cells were expanded in the lab. Researchers evaluated the safety of infusing the expanded cells as well as how long it took to reconstitute the blood system, how durable the transplants were and which cord blood unit contributed the most to engraftment. The age range of the patients was 3 to 43.

The results to date show that on average it took 14 days for the transplanted cells to engraft, versus an average of four weeks when non-expanded units of cord blood were used. Seven of the 10 patients are still alive with no evidence of disease and with sustained, complete donor engraftment. Tests revealed that the recovery of white blood cells early post transplant were derived predominantly from the expanded cord blood unit.

Grants from the National Institutes of Health, American Cancer Society and the Damon Runyon Cancer Research Foundation funded the study.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>