Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Successful combination: virtual screening and cell culture research-Interferon inhibitor discovered

Interferon alpha plays a central role in severe autoimmune disorders.

Inhibitors are not available to date. In collaboration with researchers of the ETH Zurich, Switzerland, scientists at the Paul-Ehrlich-Institut have now succeeded in identifying a substance that inhibits interferon alpha release. Their innovative research approach may not only be of significance for the search of an active substance as such but also for the rapid identification of inhibitors of important protein-protein interactions. The journal "Angewandte Chemie" (Applied Chemistry) reports on the research results as an 'epub ahead of print'(Hot Paper; DOI: 10.1002/anie.201105901)

Type I interferons, such as interferon alpha, form part of the innate immune system. Humans would not be viable without them. However, there is a downside to these important messenger substances of our immune system. Thus, constantly elevated interferon alpha levels may cause chronic inflammatory reactions contributing to autoimmune disorders such as Lupus erythematodes. So far, no active substance is available which is able to inhibit interferon release and its effects in a targeted manner. Researchers from a variety of fields of knowledge have united in search of an active substance that inhibits the interaction between the interferon receptor, which is the same for all type I interferons, and interferon alpha:

Scientists of the Institute of Pharmaceutical Sciences of the Eidgenössische Technische Hochschule (ETH, Federal Institute of Technology) at Zurich, Switzerland, the head of which is Professor Gisbert Schneider, and immunologists of the Paul-Ehrlich-Institut under the supervision of PD Dr Zoe Waibler, head of one of the temporary research groups of the institute. Dr Schneider and his co-workers screened more than 500,000 substances for their potential ability to bind to a surface area of interferon alpha with the aid of several computer-assisted methods. These methods were used to predict the said surface area as important for the interaction with the receptor.

To identify suitable substances, these 3D conformational studies were performed partly with the aid of innovative software methods developed at the ETH at Zurich: "Innovative approaches to computer-aided protein structure analyses have provided us with crucial hints where and how we should search. This study emphasises the tremendous potential of transdisciplinary concepts for active substance research", sayid Schneider.

The six most promising candidate substances were selected and Dr Waibler and her co-workers used them in cell culture assays. For this purpose, the PEI researches used plasmacytoid dendritic cells – the main producers of interferon alpha, which they harvest from bone marrow. Waibler and colleagues had already proved in previous research projects that adding the modified vaccine virus Ankara (MVA) leads to a pronounced interferon alpha response. MVA is a strongly attenuated and thus innocuous pox virus. Two of the six test substances had to be eliminated, due to their insufficient solubility. Among the four remaining ones, however, one of them was a direct hit for the investigators: While the three other substances showed no effects, one of these low molecular chemical compounds efficiently inhibited the production of interferon alpha. "We were ourselves surprised at the incredibly good results obtained from the combination of our two methods", reports Dr Waibler. In other experiments, the PEI investigators proved that the new substance was also able to inhibit interferon alpha release to other danger signals such as other viruses or double-stranded DNA. On the other hand, however, they also identified that at high concentrations of the active substance, a cell-toxic effect developed. The next step therefore is to derive other candidate substances from the leading substance thus discovered, which inhibit receptor binding of interferon selectively and still more specifically, and at the same time, show no toxicity even in high concentrations.

Apart from the concrete search of a new interferon alpha inhibitor, the methodological approach of the two investigators may be of importance. Thanks to the innovative combination of these very differing technologies, many more substances may be found in a short period of time which may be able to inhibit particular protein-protein interactions.

Dr. Susanne Stöcker | idw
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>