Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful combination: virtual screening and cell culture research-Interferon inhibitor discovered

17.11.2011
Interferon alpha plays a central role in severe autoimmune disorders.

Inhibitors are not available to date. In collaboration with researchers of the ETH Zurich, Switzerland, scientists at the Paul-Ehrlich-Institut have now succeeded in identifying a substance that inhibits interferon alpha release. Their innovative research approach may not only be of significance for the search of an active substance as such but also for the rapid identification of inhibitors of important protein-protein interactions. The journal "Angewandte Chemie" (Applied Chemistry) reports on the research results as an 'epub ahead of print'(Hot Paper; DOI: 10.1002/anie.201105901)

Type I interferons, such as interferon alpha, form part of the innate immune system. Humans would not be viable without them. However, there is a downside to these important messenger substances of our immune system. Thus, constantly elevated interferon alpha levels may cause chronic inflammatory reactions contributing to autoimmune disorders such as Lupus erythematodes. So far, no active substance is available which is able to inhibit interferon release and its effects in a targeted manner. Researchers from a variety of fields of knowledge have united in search of an active substance that inhibits the interaction between the interferon receptor, which is the same for all type I interferons, and interferon alpha:

Scientists of the Institute of Pharmaceutical Sciences of the Eidgenössische Technische Hochschule (ETH, Federal Institute of Technology) at Zurich, Switzerland, the head of which is Professor Gisbert Schneider, and immunologists of the Paul-Ehrlich-Institut under the supervision of PD Dr Zoe Waibler, head of one of the temporary research groups of the institute. Dr Schneider and his co-workers screened more than 500,000 substances for their potential ability to bind to a surface area of interferon alpha with the aid of several computer-assisted methods. These methods were used to predict the said surface area as important for the interaction with the receptor.

To identify suitable substances, these 3D conformational studies were performed partly with the aid of innovative software methods developed at the ETH at Zurich: "Innovative approaches to computer-aided protein structure analyses have provided us with crucial hints where and how we should search. This study emphasises the tremendous potential of transdisciplinary concepts for active substance research", sayid Schneider.

The six most promising candidate substances were selected and Dr Waibler and her co-workers used them in cell culture assays. For this purpose, the PEI researches used plasmacytoid dendritic cells – the main producers of interferon alpha, which they harvest from bone marrow. Waibler and colleagues had already proved in previous research projects that adding the modified vaccine virus Ankara (MVA) leads to a pronounced interferon alpha response. MVA is a strongly attenuated and thus innocuous pox virus. Two of the six test substances had to be eliminated, due to their insufficient solubility. Among the four remaining ones, however, one of them was a direct hit for the investigators: While the three other substances showed no effects, one of these low molecular chemical compounds efficiently inhibited the production of interferon alpha. "We were ourselves surprised at the incredibly good results obtained from the combination of our two methods", reports Dr Waibler. In other experiments, the PEI investigators proved that the new substance was also able to inhibit interferon alpha release to other danger signals such as other viruses or double-stranded DNA. On the other hand, however, they also identified that at high concentrations of the active substance, a cell-toxic effect developed. The next step therefore is to derive other candidate substances from the leading substance thus discovered, which inhibit receptor binding of interferon selectively and still more specifically, and at the same time, show no toxicity even in high concentrations.

Apart from the concrete search of a new interferon alpha inhibitor, the methodological approach of the two investigators may be of importance. Thanks to the innovative combination of these very differing technologies, many more substances may be found in a short period of time which may be able to inhibit particular protein-protein interactions.

Dr. Susanne Stöcker | idw
Further information:
http://www.pei.de/
http://onlinelibrary.wiley.com/doi/10.1002/anie.201105901/abstract

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>