Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Substances in honey increase detoxification gene expression, team finds

02.05.2013
Research in the wake of Colony Collapse Disorder, a mysterious malady afflicting (primarily commercial) honey bees, suggests that pests, pathogens and pesticides all play a role.

New research indicates that the honey bee diet influences the bees’ ability to withstand at least some of these assaults. Some components of the nectar and pollen grains bees collect to manufacture food to support the hive increase the expression of detoxification genes that help keep honey bees healthy.

The findings appear in the Proceedings of the National Academy of Sciences.

University of Illinois professor of entomology May Berenbaum, who led the study, said that many organisms use a group of enzymes called cytochrome P450 monooxygenases to break down foreign substances such as pesticides and compounds naturally found in plants, known as phytochemicals. However, honey bees have relatively few genes dedicated to this detoxification process compared to other insect species, she said.

“Bees feed on hundreds of different types of nectar and pollen, and are potentially exposed to thousands of different types of phytochemicals, yet they only have one-third to one-half the inventory of enzymes that break down these toxins compared to other species,” Berenbaum said.

Determining which of the 46 P450 genes in the honey bee genome are used to metabolize constituents of their natural diet and which are used to metabolize synthetic pesticides became a “tantalizing scientific question” to her research team, Berenbaum said.

“Every frame of honey (in the honey bee hive) is phytochemically different from the next frame of honey because different nectars went in to make the honey. If you don’t know what your next meal is going to be, how does your detoxification system know which enzymes to upregulate?” Berenbaum said.

Research had previously shown that eating honey turns on detoxification genes that metabolize the chemicals in honey, but the researchers wanted to identify the specific components responsible for this activity. To do this, they fed bees a mixture of sucrose and powdered sugar, called bee candy, and added different chemical components in extracts of honey. They identified p-coumaric acid as the strongest inducer of the detoxification genes.

“We found that the perfect signal, p-coumaric acid, is in everything that bees eat – it’s the monomer that goes into the macromolecule called sporopollenin, which makes up the outer wall of pollen grains. It’s a great signal that tells their systems that food is coming in, and with that food, so are potential toxins,” Berenbaum said.

Her team showed that p-coumaric acid turns on not only P450 genes, but representatives of every other type of detoxification gene in the genome. This signal can also turn on honey bee immunity genes that code for antimicrobial proteins.

According to Berenbaum, three other honey constituents were effective inducers of these detoxification enzymes. These components probably originate in the tree resins that bees use to make propolis, the “bee glue” which lines all of the cells and seals cracks within a hive.

“Propolis turns on immunity genes – it’s not just an antimicrobial caulk or glue. It may be medicinal, and in fact, people use it medicinally, too,” Berenbaum said.

Many commercial beekeepers use honey substitutes such as high-fructose corn syrup or sugar water to feed their colonies. Berenbaum believes the new research shows that honey is “a rich source of biologically active materials that truly matter to a bee.”

She hopes that future testing and development will yield honey substitutes that contain p-coumaric acid so beekeepers can enhance their bees’ ability to withstand pathogens and pesticides. Although she doesn’t recommend that beekeepers “rush out and dump p-coumaric acid into their high fructose corn syrup,” she hopes that her team’s research can be used as the basis of future work aimed at improving bee health.

“If I were a beekeeper, I would at least try to give them some honey year-round,” Berenbaum said, “because if you look at the evolutionary history of Apis mellifera, this species did not evolve with high fructose corn syrup. It is clear that honey bees are highly adapted to consuming honey as part of their diet.”

Editor’s notes: To reach May Berenbaum, call 217-333-7784;
email maybe@illinois.edu.
The paper, “Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera,” is available online:

http://www.pnas.org/content/early/2013/04/26/1303884110.full.pdf%20html

Chelsey Coombs | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>