Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Substances in honey increase detoxification gene expression, team finds

02.05.2013
Research in the wake of Colony Collapse Disorder, a mysterious malady afflicting (primarily commercial) honey bees, suggests that pests, pathogens and pesticides all play a role.

New research indicates that the honey bee diet influences the bees’ ability to withstand at least some of these assaults. Some components of the nectar and pollen grains bees collect to manufacture food to support the hive increase the expression of detoxification genes that help keep honey bees healthy.

The findings appear in the Proceedings of the National Academy of Sciences.

University of Illinois professor of entomology May Berenbaum, who led the study, said that many organisms use a group of enzymes called cytochrome P450 monooxygenases to break down foreign substances such as pesticides and compounds naturally found in plants, known as phytochemicals. However, honey bees have relatively few genes dedicated to this detoxification process compared to other insect species, she said.

“Bees feed on hundreds of different types of nectar and pollen, and are potentially exposed to thousands of different types of phytochemicals, yet they only have one-third to one-half the inventory of enzymes that break down these toxins compared to other species,” Berenbaum said.

Determining which of the 46 P450 genes in the honey bee genome are used to metabolize constituents of their natural diet and which are used to metabolize synthetic pesticides became a “tantalizing scientific question” to her research team, Berenbaum said.

“Every frame of honey (in the honey bee hive) is phytochemically different from the next frame of honey because different nectars went in to make the honey. If you don’t know what your next meal is going to be, how does your detoxification system know which enzymes to upregulate?” Berenbaum said.

Research had previously shown that eating honey turns on detoxification genes that metabolize the chemicals in honey, but the researchers wanted to identify the specific components responsible for this activity. To do this, they fed bees a mixture of sucrose and powdered sugar, called bee candy, and added different chemical components in extracts of honey. They identified p-coumaric acid as the strongest inducer of the detoxification genes.

“We found that the perfect signal, p-coumaric acid, is in everything that bees eat – it’s the monomer that goes into the macromolecule called sporopollenin, which makes up the outer wall of pollen grains. It’s a great signal that tells their systems that food is coming in, and with that food, so are potential toxins,” Berenbaum said.

Her team showed that p-coumaric acid turns on not only P450 genes, but representatives of every other type of detoxification gene in the genome. This signal can also turn on honey bee immunity genes that code for antimicrobial proteins.

According to Berenbaum, three other honey constituents were effective inducers of these detoxification enzymes. These components probably originate in the tree resins that bees use to make propolis, the “bee glue” which lines all of the cells and seals cracks within a hive.

“Propolis turns on immunity genes – it’s not just an antimicrobial caulk or glue. It may be medicinal, and in fact, people use it medicinally, too,” Berenbaum said.

Many commercial beekeepers use honey substitutes such as high-fructose corn syrup or sugar water to feed their colonies. Berenbaum believes the new research shows that honey is “a rich source of biologically active materials that truly matter to a bee.”

She hopes that future testing and development will yield honey substitutes that contain p-coumaric acid so beekeepers can enhance their bees’ ability to withstand pathogens and pesticides. Although she doesn’t recommend that beekeepers “rush out and dump p-coumaric acid into their high fructose corn syrup,” she hopes that her team’s research can be used as the basis of future work aimed at improving bee health.

“If I were a beekeeper, I would at least try to give them some honey year-round,” Berenbaum said, “because if you look at the evolutionary history of Apis mellifera, this species did not evolve with high fructose corn syrup. It is clear that honey bees are highly adapted to consuming honey as part of their diet.”

Editor’s notes: To reach May Berenbaum, call 217-333-7784;
email maybe@illinois.edu.
The paper, “Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera,” is available online:

http://www.pnas.org/content/early/2013/04/26/1303884110.full.pdf%20html

Chelsey Coombs | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>