Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying the social side of carnivores

09.10.2013
The part of the brain that makes humans and primates social creatures may play a similar role in carnivores, according to a growing body of research by a Michigan State University neuroscientist.

In studying spotted hyenas, lions and, most recently, the raccoon family, Sharleen Sakai has found a correlation between the size of the animals’ frontal cortex and their social nature.


The highly social coatimundi, native to Central and South America, has a large frontal cortex -- the part of the brain that regulates social interaction -- compared to other members of the raccoon family.

In her latest study, Sakai examined the digitally recreated brains of three species in the Procyonid family – the raccoon, the coatimundi and the kinkajou – and found the coatimundi had the largest frontal cortex. The frontal cortex is thought to regulate social interaction, and the coatimundi is by far the most social of the three animals, often living in bands of 20 or more.

The study, funded by the National Science Foundation, is published in the research journal Brain, Behavior and Evolution.

“Most neuroscience research that looks at how brains evolve has focused primarily on primates, so nobody really knows what the frontal cortex in a carnivore does,” said Sakai, professor of psychology. “These findings suggest the frontal cortex is processing social information in carnivores perhaps similar to what we’ve seen in monkeys and humans.”

Sakai did the most recent study in her neuroscience lab with Bradley Arsznov, a former MSU doctoral student who’s now an assistant professor of psychology at Minnesota State University. Sakai is one of myriad MSU faculty members who help make the university’s brain research portfolio one of the most diverse in the nation.

Her latest study was based on the findings from 45 adult Procyonid skulls acquired from university museum collections (17 coatimundis, 14 raccoons and 14 kinkajous). The researchers used computed tomography, or CT scans, and sophisticated software to digitally “fill in” the areas where the brains would have been.

When they analyzed into the findings, they discovered the female coatimundi had the largest anterior cerebrum volume consisting mainly of the frontal cortex, which regulates social activity in primates. This makes sense, Sakai said, since the female coatimundi is highly social while the male coatimundi, once grown, typically lives on its own or with another male. Also known as the Brazilian aardvark, the coatimundi – or coati – is native to Central and South America.

Raccoons, the most solitary of the three animals, had the smallest frontal cortex. However, raccoons had the largest posterior cerebrum, which contains the sensory area related to forepaw sensation and dexterity – and the raccoon’s forepaws are extremely dexterous and highly sensitive.

The rainforest-dwelling kinkajou had the largest cerebellum and brain stem, areas that regulate motor coordination. This skill is crucial for animals like the kinkajou that live in trees.

Brain size variations in this small family of carnivores appear to be related to differences in behavior including social interaction, Sakai said.

Andy Henion | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>