Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying cardiac arrhythmias in nematodes

06.10.2015

Researchers at the Goethe University have developed a simple model using the nematode Caenorhabditis elegans that can be used to test substances for treating genetically-mediated cardiac arrhythmias. They used the nematode feeding apparatus for this purpose, a rhythmically active muscle pump that resembles the muscle cells in the mammalian heart. This could be an important step on the road to personalised treatment.

Researchers at the Goethe University have developed a simple model using the nematode Caenorhabditis elegans that can be used to test substances for treating genetically-mediated cardiac arrhythmias. They used the nematode feeding apparatus for this purpose, a rhythmically active muscle pump that resembles the muscle cells in the mammalian heart. This could be an important step on the road to personalised treatment.

Cardiac arrhythmias often have genetic causes. The same mutation is often detected in patients with the same type of arrhythmia. However, it is not clear from the outset whether other mutations in the same gene have the same effects. The effects of the arrhythmia could also differ depending on the type of mutation.

This knowledge could definitely be significant for treatment. This is because a type of medication that works particularly well for a specific mutation could be less beneficial for other mutations. Researchers have long been searching for a simple model that can be used to create certain genetic defects and in which the efficacy of substances can be tested.

The research group, led by Alexander Gottschalk at the Institute of Biochemistry and the Buchmann Institute at the Goethe University, used the nematode Caenorhabditis elegans because it is easy to modify it genetically. The nematode feeding apparatus uses ion channels similar to those in muscle cells of the mammalian heart. Ion channels play an important role in regulating cardiac muscle excitation, and mutations in their genes often lead to arrhythmias.

The researchers used optogenetic techniques, since the feeding apparatus, i.e. the pharynx, does not naturally pump as regularly as required in order to recognise arrhythmias. They introduced photo-activated ion channels into the muscle cells using a genetic approach. In this way, the apparatus can be transformed into a light-activated muscle pump with highly regular action. They then introduced various ion channel mutations, which are responsible for the so-called Timothy syndrome (LQT8) in humans. In practice, the mutated pharynx then demonstrated aberrant pump behaviour.

"We were able to improve or reverse these arrythmic effects using a substance that is already known to be pharmacologically active, and which is administered to patients with Timothy syndrome in a modified form", explains Prof Alexander Gottschalk. The goal is to use the worm to search for new active substances for other types of arrhythmia.

These could even potentially be patient-specific if the exact mutation is transferred to the worm. The ease of genetic mutability of the nematode is highly advantageous in this regard when compared to a mouse model, which would be very difficult to generate. In order to facilitate the search for new medications, the researchers also developed a new optical method with which several animals can be analysed in parallel.

Publication: C. Schüler, E. Fischer, L. Shaltiel, W. Steuer Costa, A. Gottschalk. (2015) Arrhythmogenic effects of mutated L-type Ca2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans. Scientific Reports 5: 14427.
DOI: 10.1038/srep14427

Informationen: Prof. Alexander Gottschalk, Institut für Biochemie, Campus Riedberg, Tel.: (069) 798-42518, a.gottschalk@em.uni-frankfurt.de.

An image is available for download at: www.uni-frankfurt.de/58253225

Image text: The feeding apparatus (pharynx) of an optogentically modified nematode can reliably follow various "commando" frequencies (blue text). The control shows the reaction in a healthy worm. Below, a "sick" worm with a defective calcium channel that pumps irregularly at high frequencies.

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-frankfurt.de

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>