Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying cardiac arrhythmias in nematodes

06.10.2015

Researchers at the Goethe University have developed a simple model using the nematode Caenorhabditis elegans that can be used to test substances for treating genetically-mediated cardiac arrhythmias. They used the nematode feeding apparatus for this purpose, a rhythmically active muscle pump that resembles the muscle cells in the mammalian heart. This could be an important step on the road to personalised treatment.

Researchers at the Goethe University have developed a simple model using the nematode Caenorhabditis elegans that can be used to test substances for treating genetically-mediated cardiac arrhythmias. They used the nematode feeding apparatus for this purpose, a rhythmically active muscle pump that resembles the muscle cells in the mammalian heart. This could be an important step on the road to personalised treatment.

Cardiac arrhythmias often have genetic causes. The same mutation is often detected in patients with the same type of arrhythmia. However, it is not clear from the outset whether other mutations in the same gene have the same effects. The effects of the arrhythmia could also differ depending on the type of mutation.

This knowledge could definitely be significant for treatment. This is because a type of medication that works particularly well for a specific mutation could be less beneficial for other mutations. Researchers have long been searching for a simple model that can be used to create certain genetic defects and in which the efficacy of substances can be tested.

The research group, led by Alexander Gottschalk at the Institute of Biochemistry and the Buchmann Institute at the Goethe University, used the nematode Caenorhabditis elegans because it is easy to modify it genetically. The nematode feeding apparatus uses ion channels similar to those in muscle cells of the mammalian heart. Ion channels play an important role in regulating cardiac muscle excitation, and mutations in their genes often lead to arrhythmias.

The researchers used optogenetic techniques, since the feeding apparatus, i.e. the pharynx, does not naturally pump as regularly as required in order to recognise arrhythmias. They introduced photo-activated ion channels into the muscle cells using a genetic approach. In this way, the apparatus can be transformed into a light-activated muscle pump with highly regular action. They then introduced various ion channel mutations, which are responsible for the so-called Timothy syndrome (LQT8) in humans. In practice, the mutated pharynx then demonstrated aberrant pump behaviour.

"We were able to improve or reverse these arrythmic effects using a substance that is already known to be pharmacologically active, and which is administered to patients with Timothy syndrome in a modified form", explains Prof Alexander Gottschalk. The goal is to use the worm to search for new active substances for other types of arrhythmia.

These could even potentially be patient-specific if the exact mutation is transferred to the worm. The ease of genetic mutability of the nematode is highly advantageous in this regard when compared to a mouse model, which would be very difficult to generate. In order to facilitate the search for new medications, the researchers also developed a new optical method with which several animals can be analysed in parallel.

Publication: C. Schüler, E. Fischer, L. Shaltiel, W. Steuer Costa, A. Gottschalk. (2015) Arrhythmogenic effects of mutated L-type Ca2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans. Scientific Reports 5: 14427.
DOI: 10.1038/srep14427

Informationen: Prof. Alexander Gottschalk, Institut für Biochemie, Campus Riedberg, Tel.: (069) 798-42518, a.gottschalk@em.uni-frankfurt.de.

An image is available for download at: www.uni-frankfurt.de/58253225

Image text: The feeding apparatus (pharynx) of an optogentically modified nematode can reliably follow various "commando" frequencies (blue text). The control shows the reaction in a healthy worm. Below, a "sick" worm with a defective calcium channel that pumps irregularly at high frequencies.

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-frankfurt.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>