Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying a catalyst for blood cancers

25.04.2017

Imagine this scenario on a highway: A driver starts to make a sudden lane change but realizes his mistake and quickly veers back, too late. Other motorists have already reacted and, in some cases, collide. Meanwhile, the original motorist - the one who caused the problem - drives on.

This is similar to what happens with the protein TET2 and a variety of blood cancers. TET2 is a tumor suppressor, preventing hematopoietic (blood) stem cells from overgrowing. However, if TET2 becomes mutated, which happens more frequently than we like, it allows other genes to mutate. TET2 loss does not actually create a cancerous state, but it helps create the conditions for cancer to thrive.


This is a tumor-cell infiltration into the liver of a Tet2-ko mouse.

Credit: Sylvester Comprehensive Cancer Center

"If you lose TET2, it's not a malignant state, per se," said Mingjiang Xu, M.D., Ph.D., cancer researcher at Sylvester Comprehensive Cancer Center and associate professor of biochemistry and molecular biology at the University of Miami Miller School of Medicine. "But it's creating a situation for other mutations to happen, leading to all types of blood cancer."

Xu and colleagues have been studying Tet2 for several years, and are starting to get a handle on how it operates. They published a paper today in the prestigious journal Nature Communications, which describes how TET2 loss can open the door for mutations that drive myeloid, lymphoid, and other cancers.

A different kind of mutation

That TET2 has a hand in several blood cancers makes it unique. Many mutated genes generate a specific type of cancer, depending on where they originate.

"If you lose TET2, it leads to blood cancers and it could be any type," said Xu. "Usually if you lose one gene, it leads to one specific cancer."

TET2 is an enzyme that demethylates DNA. Methylation turns down genes, keeping them from coding for specific proteins. In other words, TET2 may operate as a master switch, controlling whether certain genes are turned on or off.

TET2 mutations are found in 30 percent of myelodysplastic syndrome (MDS); 30 percent of secondary acute myeloid leukemias; and more than 50 percent of chronic myelomonocytic leukemias.

In the Nature Communications paper, Xu's team showed that mice without the Tet2 gene are more prone to blood cancers. In fact, removing Tet2 turns blood stem cells into mutation machines, and some of those malfunctions generate cancer.

Targeting Tet2

From a clinical standpoint, TET2 is a little tricky. First, it is easier to turn a protein off than turn it on. In addition, TET2 does not actually drive the cancer alone - it's the mutations acquired cooperate with the TET2 loss doing that nasty work. Turning up Tet2 could be helpful, but it has to happen early. Once the mutations are generated, targeting Tet2 would have little effect.

Still, Xu believes TET2 therapeutics could have a place in blood cancer treatment. He notes that around 5 percent of people over the age of 70 have TET2 mutations, which would make them ideal candidates for a preventive therapy.

"We are developing a method to target TET2," said Xu. "If we target that population for early therapy, we could potentially prevent those downstream mutations from happening."

Media Contact

Patrick Bartosch
PATRICK.BARTOSCH@MED.MIAMI.EDU
305-243-8219

http://www.med.miami.edu/ 

Patrick Bartosch | EurekAlert!

Further reports about: TET2 blood cancer blood cancers blood stem cells leukemias mutations

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>