Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study unveils structural details of enzyme vital to DNA repair

07.10.2008
New findings may help development of potential cancer therapies

The findings suggest new strategies for targeting Mre11 protein for cancer therapies, particularly when combined with other inhibitors of DNA repair. Mre11 is a key component of cellular systems used for sensing, processing, and coordinating repair of two-stranded breaks in DNA. Mutations of this key enzyme can lead to the development of cancer.

The study was published in the October 3, 2008, issue (Volume 135, Number 7) of the journal Cell.

"Previous studies had suggested that Mre11 activity was not essential for initiation of homologous recombination repair—the critical pathway for error-free repair of DNA double-strand breaks," said John Tainer, a Scripps Research scientist and member of The Skaggs Institute for Chemical Biology, whose laboratory led the study with Scripps Research Professor Paul Russell. "Our work offers clear structural and biological evidence that Mre11 is central to the process, showing that Mre11 employs an endonuclease activity critical for initiation of recombination repair. This resolves paradoxes regarding the function of this nuclease, which has been recognized as the core components of the MRN complex, and gives us hope that we can target this key protein in cancer therapies."

Mre11 forms the core of the multifunctional Mre11-Rad50-Nbs1 (MRN) complex that detects DNA double-strand breaks, activates the ATM checkpoint kinase (which slows cell growth, giving the cell time to repair the breaks so that mutagenesis doesn't occur), and initiates homologous recombination repair of double-stranded breaks. Fission yeast, Schizosaccharomyces pombe, is often used as a model in cell cycle studies.

"The interesting thing about DNA repair biology," Tainer said, "is that cancer cells require intact DNA repair to maintain resistance to chemotherapies. The inhibition of recombination by targeting the Mre11 protein has significant promise for cancer therapeutics and could be combined with other inhibitors of DNA repair. Several studies in the past two years have reported mutations in MRN genes in several cancer types, especially colon and breast cancer."

Homologous recombination is a type of genetic recombination that involves the physical rearrangement and exchange of material between two strands of DNA. The process of homologous recombination occurs naturally, and is also utilized as a molecular biology laboratory technique for introducing genetic changes.

"Our study advances our understanding of how our cells handle DNA double-stranded breaks, whether the breaks are induced by exposure to environmental agents like radiation, or arise spontaneously due to errors in normal DNA metabolism," he said.

Cells balance DNA repair with DNA variation so that evolutionary or beneficial mutations can occur. In human cells, as many as 10,000 DNA bases are repaired each day, so these enzymes are essential to cell survival and protection against problematic mutations that may increase the risk of cancer.

New Structural Evidence

Using x-ray crystallography and small-angle x-ray scattering, the Scripps Research scientists were able to show precisely how these molecules bind to the DNA and how the core component of the complex—Mre11—is able to bridge the diverse molecular architectures found at DNA breaks.

"The structural evidence we uncovered provided us with molecular snapshots of the DNA binding event," said Russell. "When you break both strands of DNA, it's like breaking a piece of wood—you wind up with splintered ends with frayed tips. The Mre11 protein can not only recognize directly the broken ends of the DNA, it can also recognize those frayed ends with the overhanging DNA strands."

As a first responder to any double-stranded break, the MRN complex recruits the ATM checkpoint kinase, initiating a signaling cascade that leads to cell cycle arrest and checkpoint responses that are critical to maintaining the integrity of the human genome. Studies have shown that patients with mutations in the ATM gene are at much greater risk for cancer. But while the Mre11 complex subunits are essential for organism and cell viability in mammals, ATM is not; ATM activation is only one of the important Mre11 complex functions.

However, as the study noted, the Mre11 nuclease is found in every terrestrial organism on earth.

"Every creature has it," Tainer said. "It's a very ancient system of maintaining the integrity of DNA. That has been one of the striking things of our research that these same biochemical mechanisms appear to be maintained throughout the course of evolution."

The first authors of the study, Mre11 Dimers Coordinate DNA End Bridging and Nuclease Processing in Double Strand Break Repair, are R. Scott Williams and Gabriel Moncalian of The Scripps Research Institute. In addition to Tainer, Russell, Williams, and Moncalian, other authors of the study include David S. Shin, Chiharu Hitomi, Davide Moiani, Jessica S. Williams, Yoshiki Yamada, Oliver Limbo, Lynda M. Groocock, and Grant Guenther of Scripps Research; and Dana Cahill and James P. Carney of the University of Maryland School of Medicine. For more information, see Cell at http://www.cell.com/content/article/abstract?uid=PIIS0092867408010623 .

The study was supported by the Canadian Institutes of Health Research, the Alberta Heritage Foundation for Medical Research, The Skaggs Institute for Chemical Biology at Scripps Research, the Uehara Memorial Foundation fellowship, the National Cancer Institute and the U.S. Department of Energy and MAGGIE (Molecular Assemblies, Genes, and Genomics Integrated Efficiently).

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Currently operating from temporary facilities in Jupiter, Scripps Florida will move to its permanent campus by 2009.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>