Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study uncovers how cellular stress causes brain damage

Researchers at RIKEN have linked a specific type of cellular stress to neuronal cell death leading to brain damage. The findings overturn existing assumptions on the role of a key neuronal protein in cellular stress response, opening up new avenues for research on a range of neurodegenerative diseases.

New findings by researchers at RIKEN, Japan’s flagship research institution, have linked a specific type of cellular stress to neuronal cell death leading to brain damage. Published in the journal Neuron, the findings overturn existing assumptions on the role of a key neuronal protein in cellular stress response, opening up new avenues for research on a range of neurodegenerative diseases.

As an organelle responsible for the production, processing and transport of a wide variety of cellular materials, the endoplasmic reticulum (ER) plays a central role in maintaining protein quality in the cell. Pathological conditions that affect protein folding or calcium signaling can interfere with this role, causing stress to the ER which, in severe cases, can trigger cell death (apoptosis). In the brain, such apoptosis has been associated with neurodegenerative diseases such as Alzheimer’s disease and Huntington’s disease (HD), yet the mechanisms involved remain poorly understood.

To clarify these mechanisms, the researchers investigated the relationship between ER stress and a neuronal protein called inositol 1,4,5-trisphosphate receptor 1 (IP3R1), one of three IP3R receptors that modulate intracellular calcium signaling. Using calcium imaging techniques, the team identified a sharp decline in IP3R1 activity in cells treated with ER stress inducers. It was further revealed that the ER stress-dependent dysfunction of IP3R1 induced neuronal cell death and brain damage, situating IP3R1 as a crucial link between ER stress and neuron cell death.

Underlying this link, the researchers identified a mechanism through which GRP78, a molecular chaperone, binds to a region of IP3R1 called L3V to positively regulate tetrameric assembly of IP3R1. ER stress, they show, impairs this assembly mechanism and subsequently inhibits IP3R1 activation, a process also observed in the brain of model mice with HD.

As the first research to highlight the significant role of IP3R1 in protecting the brain from ER stress, the Neuron study marks a major step toward clarifying the mechanisms underlying stress-induced brain damage, promising advancements in the treatment of neurodegenerative diseases.

For more information, please contact:

Dr. Katsuhiko Mikoshiba
Laboratory for Developmental Neurobiology
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9745 / Fax: +81-(0)48-467-9744
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Takayasu Higo, Kozo Hamada, Chihiro Hisatsune, Nobuyuki Nukina, Tsutomu Hashikawa, Mitsuharu Hattori, Takeshi Nakamura and Katsuhiko Mikoshiba. Mechanism of ER Stress-Induced Brain Damage by IP3 Receptor. Neuron 68(5): 865-878. DOI: 10.1016/j.neuron.2010.11.010

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>