Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study uncovers how cellular stress causes brain damage

15.12.2010
Researchers at RIKEN have linked a specific type of cellular stress to neuronal cell death leading to brain damage. The findings overturn existing assumptions on the role of a key neuronal protein in cellular stress response, opening up new avenues for research on a range of neurodegenerative diseases.

New findings by researchers at RIKEN, Japan’s flagship research institution, have linked a specific type of cellular stress to neuronal cell death leading to brain damage. Published in the journal Neuron, the findings overturn existing assumptions on the role of a key neuronal protein in cellular stress response, opening up new avenues for research on a range of neurodegenerative diseases.

As an organelle responsible for the production, processing and transport of a wide variety of cellular materials, the endoplasmic reticulum (ER) plays a central role in maintaining protein quality in the cell. Pathological conditions that affect protein folding or calcium signaling can interfere with this role, causing stress to the ER which, in severe cases, can trigger cell death (apoptosis). In the brain, such apoptosis has been associated with neurodegenerative diseases such as Alzheimer’s disease and Huntington’s disease (HD), yet the mechanisms involved remain poorly understood.

To clarify these mechanisms, the researchers investigated the relationship between ER stress and a neuronal protein called inositol 1,4,5-trisphosphate receptor 1 (IP3R1), one of three IP3R receptors that modulate intracellular calcium signaling. Using calcium imaging techniques, the team identified a sharp decline in IP3R1 activity in cells treated with ER stress inducers. It was further revealed that the ER stress-dependent dysfunction of IP3R1 induced neuronal cell death and brain damage, situating IP3R1 as a crucial link between ER stress and neuron cell death.

Underlying this link, the researchers identified a mechanism through which GRP78, a molecular chaperone, binds to a region of IP3R1 called L3V to positively regulate tetrameric assembly of IP3R1. ER stress, they show, impairs this assembly mechanism and subsequently inhibits IP3R1 activation, a process also observed in the brain of model mice with HD.

As the first research to highlight the significant role of IP3R1 in protecting the brain from ER stress, the Neuron study marks a major step toward clarifying the mechanisms underlying stress-induced brain damage, promising advancements in the treatment of neurodegenerative diseases.

For more information, please contact:

Dr. Katsuhiko Mikoshiba
Laboratory for Developmental Neurobiology
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9745 / Fax: +81-(0)48-467-9744
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference:
Takayasu Higo, Kozo Hamada, Chihiro Hisatsune, Nobuyuki Nukina, Tsutomu Hashikawa, Mitsuharu Hattori, Takeshi Nakamura and Katsuhiko Mikoshiba. Mechanism of ER Stress-Induced Brain Damage by IP3 Receptor. Neuron 68(5): 865-878. DOI: 10.1016/j.neuron.2010.11.010

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>