Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study uncovers how cellular stress causes brain damage

15.12.2010
Researchers at RIKEN have linked a specific type of cellular stress to neuronal cell death leading to brain damage. The findings overturn existing assumptions on the role of a key neuronal protein in cellular stress response, opening up new avenues for research on a range of neurodegenerative diseases.

New findings by researchers at RIKEN, Japan’s flagship research institution, have linked a specific type of cellular stress to neuronal cell death leading to brain damage. Published in the journal Neuron, the findings overturn existing assumptions on the role of a key neuronal protein in cellular stress response, opening up new avenues for research on a range of neurodegenerative diseases.

As an organelle responsible for the production, processing and transport of a wide variety of cellular materials, the endoplasmic reticulum (ER) plays a central role in maintaining protein quality in the cell. Pathological conditions that affect protein folding or calcium signaling can interfere with this role, causing stress to the ER which, in severe cases, can trigger cell death (apoptosis). In the brain, such apoptosis has been associated with neurodegenerative diseases such as Alzheimer’s disease and Huntington’s disease (HD), yet the mechanisms involved remain poorly understood.

To clarify these mechanisms, the researchers investigated the relationship between ER stress and a neuronal protein called inositol 1,4,5-trisphosphate receptor 1 (IP3R1), one of three IP3R receptors that modulate intracellular calcium signaling. Using calcium imaging techniques, the team identified a sharp decline in IP3R1 activity in cells treated with ER stress inducers. It was further revealed that the ER stress-dependent dysfunction of IP3R1 induced neuronal cell death and brain damage, situating IP3R1 as a crucial link between ER stress and neuron cell death.

Underlying this link, the researchers identified a mechanism through which GRP78, a molecular chaperone, binds to a region of IP3R1 called L3V to positively regulate tetrameric assembly of IP3R1. ER stress, they show, impairs this assembly mechanism and subsequently inhibits IP3R1 activation, a process also observed in the brain of model mice with HD.

As the first research to highlight the significant role of IP3R1 in protecting the brain from ER stress, the Neuron study marks a major step toward clarifying the mechanisms underlying stress-induced brain damage, promising advancements in the treatment of neurodegenerative diseases.

For more information, please contact:

Dr. Katsuhiko Mikoshiba
Laboratory for Developmental Neurobiology
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9745 / Fax: +81-(0)48-467-9744
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference:
Takayasu Higo, Kozo Hamada, Chihiro Hisatsune, Nobuyuki Nukina, Tsutomu Hashikawa, Mitsuharu Hattori, Takeshi Nakamura and Katsuhiko Mikoshiba. Mechanism of ER Stress-Induced Brain Damage by IP3 Receptor. Neuron 68(5): 865-878. DOI: 10.1016/j.neuron.2010.11.010

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>