Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study by Syracuse University scientists uncovers a reproduction conundrum

For sperm, faster isn't always better
When it comes to sperm meeting eggs in sexual reproduction, conventional wisdom holds that the fastest swimming sperm are most likely to succeed in their quest to fertilize eggs. That wisdom was turned upside down in a new study of sperm competition in fruit flies (Drosophila melanogaster), which found that slower and/or longer sperm outcompete their faster rivals.

The study, recently published online in Current Biology and forthcoming in print on Sept. 25, was done by a team of scientists led by corresponding author Stefan Lüpold, a post-doctoral researcher in the Department of Biology in the College of Arts and Sciences. The team made the discovery using fruit flies that were genetically altered so that the heads of their sperm glow fluorescent green or red under the microscope. The fruit flies, developed by biology Professor John Belote, enable researchers to observe sperm in real time inside the female reproductive tract.

"Sperm competition is a fundamental biological process throughout the animal kingdom, yet we know very little about how ejaculate traits determine which males win contests," says Lüpold, a Swiss National Science Foundation Fellow working in the laboratory of biology Professor Scott Pitnick. "This is the first study that actually measures sperm quality under competitive conditions inside the female, allowing us to distinguish the traits that are important in each of the reproductive phases."

The research is also significant because the scientists studied naturally occurring variations in sperm traits, rather than manipulating the test populations for specific traits. After identifying and isolating groups of males with similar ejaculate traits that remained constant across multiple generations, the scientists mated single females with pairs of males from the different groups. "This approach allowed us to simultaneously investigate multiple ejaculate traits and also observe how sperm from one male change behavior depending upon that of rival sperm," Lüpold says.

Female fruit flies mate about every three days. Sperm from each mating swim through the female bursa into a storage area until eggs are released. Eggs travel from the ovaries into the bursa to await the sperm. However, sperm battles actually take place within the storage area. After each mating, new sperm try to toss sperm from previous matings out of storage. The female then ejects the displaced sperm from the reproductive system, eliminating the ejected sperm from the mating game. The researchers observed that longer and slower-moving sperm were better at displacing their rivals and were also less likely to be ejected from storage than their more agile counterparts.

"The finding that longer sperm were more successful is consistent with earlier studies," Lüpold says. "However, the finding that slower sperm also have an advantage is counterintuitive."

Why slower sperm have an advantage is still open to speculation. "It could be that, when swimming back and forth in storage, slower sperm hit the exit less frequently and are therefore less likely to be pushed out," Lüpold says. "Or, because sperm velocity is dependent on the density of sperm within the narrow storage area, it could be that velocity isn't really the target of sexual selection in fruit flies, but is rather a consequence of the amount of sperm packed into the storage organ."

The U.S. National Science Foundation (NSF) and the Swiss National Science Foundation funded the study.

Judy Holmes | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>