Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study by Syracuse University scientists uncovers a reproduction conundrum

02.08.2012
For sperm, faster isn't always better
When it comes to sperm meeting eggs in sexual reproduction, conventional wisdom holds that the fastest swimming sperm are most likely to succeed in their quest to fertilize eggs. That wisdom was turned upside down in a new study of sperm competition in fruit flies (Drosophila melanogaster), which found that slower and/or longer sperm outcompete their faster rivals.

The study, recently published online in Current Biology and forthcoming in print on Sept. 25, was done by a team of scientists led by corresponding author Stefan Lüpold, a post-doctoral researcher in the Department of Biology in the College of Arts and Sciences. The team made the discovery using fruit flies that were genetically altered so that the heads of their sperm glow fluorescent green or red under the microscope. The fruit flies, developed by biology Professor John Belote, enable researchers to observe sperm in real time inside the female reproductive tract.

"Sperm competition is a fundamental biological process throughout the animal kingdom, yet we know very little about how ejaculate traits determine which males win contests," says Lüpold, a Swiss National Science Foundation Fellow working in the laboratory of biology Professor Scott Pitnick. "This is the first study that actually measures sperm quality under competitive conditions inside the female, allowing us to distinguish the traits that are important in each of the reproductive phases."

The research is also significant because the scientists studied naturally occurring variations in sperm traits, rather than manipulating the test populations for specific traits. After identifying and isolating groups of males with similar ejaculate traits that remained constant across multiple generations, the scientists mated single females with pairs of males from the different groups. "This approach allowed us to simultaneously investigate multiple ejaculate traits and also observe how sperm from one male change behavior depending upon that of rival sperm," Lüpold says.

Female fruit flies mate about every three days. Sperm from each mating swim through the female bursa into a storage area until eggs are released. Eggs travel from the ovaries into the bursa to await the sperm. However, sperm battles actually take place within the storage area. After each mating, new sperm try to toss sperm from previous matings out of storage. The female then ejects the displaced sperm from the reproductive system, eliminating the ejected sperm from the mating game. The researchers observed that longer and slower-moving sperm were better at displacing their rivals and were also less likely to be ejected from storage than their more agile counterparts.

"The finding that longer sperm were more successful is consistent with earlier studies," Lüpold says. "However, the finding that slower sperm also have an advantage is counterintuitive."

Why slower sperm have an advantage is still open to speculation. "It could be that, when swimming back and forth in storage, slower sperm hit the exit less frequently and are therefore less likely to be pushed out," Lüpold says. "Or, because sperm velocity is dependent on the density of sperm within the narrow storage area, it could be that velocity isn't really the target of sexual selection in fruit flies, but is rather a consequence of the amount of sperm packed into the storage organ."

The U.S. National Science Foundation (NSF) and the Swiss National Science Foundation funded the study.

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>