Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Suggests Theory for Insect Colonies As ‘Superorganisms’

19.01.2010
A team of researchers including scientists from the University of Florida has shown insect colonies follow some of the same biological “rules” as individuals, a finding that suggests insect societies operate like a single “superorganism” in terms of their physiology and life cycle.

For more than a century, biologists have marveled at the highly cooperative nature of ants, bees and other social insects that work together to determine the survival and growth of a colony.

The social interactions are much like cells working together in a single body, hence the term “superorganism” -- an organism comprised of many organisms, according to James Gillooly, an assistant professor in the department of biology at UF’s College of Liberal Arts and Sciences.

Now, researchers from UF, the University of Oklahoma and the Albert Einstein College of Medicine have taken the same mathematical models that predict lifespan, growth and reproduction in individual organisms and used them to predict these features in whole colonies.

By analyzing data from 168 different social insect species including ants, termites, bees and wasps, the authors found that the lifespan, growth rates and rates of reproduction of whole colonies when considered as superorganisms were nearly indistinguishable from individual organisms.

The findings will be published online this week in the online "Early Edition" of the Proceedings of the National Academy of Sciences.

“This PNAS paper regarding the energetic basis of colonial living in social insects is notable for its originality and also for its importance,” said Edward O. Wilson, a professor of biology at Harvard University and co-author of the book “The Super-Organism,” who was not involved in the research. “The research certainly adds a new perspective to our study of how insect societies are organized and to what degree they are organized.”

The study may also help scientists understand how social systems have arisen through natural selection -- the process by which evolution occurs. The evolution of social systems of insects in particular, where sterile workers live only to help the queen reproduce, has long been a mystery, Gillooly said.

“In life, two of the major evolutionary innovations have been how cells came together to function as a single organism, and how individuals joined together to function as a society,” said Gillooly, who is a member of the UF Genetics Institute. “Relatively speaking, we understand a considerable amount about how the size of multicellular organisms affects the life cycle of individuals based on metabolic theory, but now we are showing this same theoretical framework helps predict the life cycle of whole societies of organisms.”

Researchers note that insect societies make up a large fraction of the total biomass on Earth, and say the finding may have implications for human societies.

“Certainly one of the reasons folks have been interested in social insects and the consequences of living in groups is that it tells us about our own species,” said study co-author Michael Kaspari, a presidential professor of zoology, ecology and evolutionary biology at the University of Oklahoma and the Smithsonian Tropical Research Institute. “There is currently a vigorous debate on how sociality evolved. We suggest that any theory of sociality be consistent with the amazing convergence in the way nonsocial and social organisms use energy.”

In addition to Gillooly and Kaspari, Chen Hou from the Albert Einstein College of Medicine, and Hannah B. Vander Zanden of the University of Florida participated in the study.

John Pastor | Newswise Science News
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>