Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Suggests Immune System Can Boost Nerve Regrowth

04.10.2012
Modulating immune response to injury could accelerate the regeneration of severed peripheral nerves, a new study in an animal model has found. By altering activity of the macrophage cells that respond to injuries, researchers dramatically increased the rate at which nerve processes regrew.

Influencing the macrophages immediately after injury may affect the whole cascade of biochemical events that occurs after nerve damage, potentially eliminating the need to directly stimulate the growth of axons using nerve growth factors. If the results of this first-ever study can be applied to humans, they could one day lead to a new strategy for treating peripheral nerve injuries that typically result from trauma, surgical resection of tumors or radical prostectomy.

“Both scar formation and healing are the end results of two different cascades of biological processes that result from injuries,” said Ravi Bellamkonda, Carol Ann and David D. Flanagan professor in the Wallace H. Coulter Department of Biomedical Engineering and member of the Regenerative Engineering and Medicine Center at Georgia Tech and Emory University. “In this study, we show that by manipulating the immune system soon after injury, we can bias the system toward healing, and stimulate the natural repair mechanisms of the body.”

Beyond nerves, researchers believe their technique could also be applied to help regenerate other tissue – such as bone. The research was supported by the National Institutes of Health (NIH), and reported online Sept. 26, 2012, by the journal Biomaterials.

After injury, macrophages that congregate at the site of the injury operate like the conductor of an orchestra, controlling processes that remove damaged tissue, set the stage for repair and encourage the replacement of cells and matrix materials, said Nassir Mokarram, a Ph.D. student in the Coulter Department of Biomedical Engineering and Georgia Tech’s School of Materials Science and Engineering. Converting the macrophages to a “pro-healing” phenotype that secretes healing compounds signals a broad range of other processes – the “players” in the symphony analogy.

“If you really want to change the symphony’s activity from generating scarring to regeneration of tissue, you need to target the conductor, not just a few of the players, and we think macrophages are capable of being conductors of the healing symphony,” said Mokarram.

Macrophages are best known for their role in creating inflammation at the site of injuries. The macrophages and other immune system components battle infection, remove dead tissue – and often create scarring that prevents nerve regeneration. However, these macrophages can exist in several different phenotypes depending on the signals they receive. Among the macrophage phenotypes are two classes – M2a and M2c – that encourage healing.

Bellamkonda’s research team used an interleukin 4 (IL-4) cytokine to convert macrophages within the animal model to the “pro-healing” phenotypes. They placed a gel that released IL-4 into hollow polymeric nerve guides that connected the ends of severed animal sciatic nerves that had to grow across a 15 millimeter gap to regenerate. The IL-4 remained in the nerve guides for 24 hours or less, and had no direct influence on the growth of nerve tissue in this short period of time.

Three weeks after the injury, the nerve guides that released IL-4 were almost completely filled with re-grown axons. The treated nerve guides had approximately 20 times more nerve regeneration than the control channels, which had no IL-4-treated macrophages.

Research is now underway to develop the technique for determining how soon after injury the macrophages should be treated, and what concentration of IL-4 would be most effective.

“We believe immune cells are the ‘master knobs’ that modulate the biochemical cascade downstream,” Mokarram said. “They are among the ‘first-responders’ to injury, and are involved for almost the whole regeneration process, secreting several factors that affect other cells. With IL-4, we are doing something very early in the process that is triggering a cascade of events whose effects last longer.”

Tissue engineering approaches have focused on encouraging the growth of nerve cells, using special scaffolds and continuous application of nerve growth factors over a period of weeks. Instead, the Bellamkonda group believes that influencing the immune system soon after injury could provide a simpler and more effective treatment able to restore nerve function.

“Beyond neural tissue engineering, the implications of this approach can be significant for other types of tissue engineering,” said Mokarram. “Neural tissue may be just a model.”

As part of their paper, the researchers defined a state they termed “regenerative bias” that predicts the probability of a regenerative outcome. The Bellamkonda group discovered that when it quantified the ratio of healing macrophages to scar-promoting macrophages at the site of injury early after the injury, the ratio – or regenerative bias – predicted whether or not the nerve regenerated after many weeks.

“The significance of this finding is that IL-4 and other factors may be used to make sure the regenerative bias is high so that nerves, and perhaps other tissues, can regenerate on their own after injury,” Bellamkonda said.

The research team also included Alishah Merchant, Vivek Mukhatyar and Gaurangkumar Patel, all from the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

This research was supported by the National Institutes of Health under grants NS44409, NS65109 and 1R41NS06777. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National lnstitutes of Health.

CITATION: Mokarram N, et al., Effect of modulating macrophage phenotype on peripheral nerve repair, Biomaterials (2012), http://dx.doi.org/10.1016/j.biomaterials.2012.08.050

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 309
Atlanta, Georgia 30308 USA
Media Relations Contact: John Toon (404-894-6986)(jtoon@gatech.edu).
Writer: John Toon

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>