Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests enzyme crucial to DNA replication may provide potent anti-cancer drug target

15.04.2011
Elegant crystal structures depict sophisticated machine for cutting DNA

An enzyme essential for DNA replication and repair in humans works in a way that might be exploited as anti-cancer therapy, say researchers at The Scripps Research Institute and Lawrence Berkeley National Laboratory.

The research, published in the April 15, 2011 issue of the journal Cell, focused on a member of a group of enzymes called flap endonucleases, which are essential to the life of a cell. The findings show new, clearly defined crystal structures of the enzyme FEN1 in action—demonstrating it functions in a way opposite to accepted dogma.

"This work represents a seminal advance in the understanding of FEN1," said team leader John Tainer, professor and member of the Skaggs Institute for Chemical Biology at Scripps Research and senior scientist at Lawrence Berkeley National Lab. "The research produced very accurate structures showing DNA before and after being cut by FEN1 activity, providing a basis for understanding a whole superfamily of enzymes that must cut specific DNA structures in order for DNA to be replicated and repaired."

This superfamily includes important targets for the development of new cancer interventions, Tainer added. Many cancers show high levels of FEN1 expression, which in some cases is correlated to tumor aggression. For these cases, FEN1-specific inhibitors may have chemotherapeutic potential.

"A better understanding of FEN1 structure and function may have long-term positive benefits to human health," noted co-author Andy Arvai, a scientific associate at Scripps Research.

Working rapidly with exquisite precision

In order for DNA to replicate, it has to unwind its double helix, which is formed out of two strands of amino acids coiled together. This unwinding is done by a replication fork whereby the two strands are separated. These strands, which form two branching prongs of the replication fork, serves as a template for production of a new complementary strand.

That task is fairly straightforward on what is known as the "leading" of the two strands. The replication fork moves along from the so-called 3' (three prime) end to the 5' (five prime) end, and DNA polymerase synthesizes a 5' to 3' complementary strand.

But because the two strands are anti-parallel, meaning they are oriented in opposite directions, the work of DNA polymerase, which can only work in the 5' to 3' direction, is more difficult on the so-called lagging strand. This strand needs to be replicated in pieces, which are known as Okazaki fragments, located near the replication fork. These fragments include a "primer," a strand of RNA that serves as a starting point for DNA synthesis.

This is where FEN1 comes in—it removes that RNA primer on the 5' flap, which occurs every 100 base pairs or so on the lagging strand, said Tainer. It's an enormous job that has to be done rapidly and accurately in order to glue the ends of replicated DNA on the lagging strand together to eventually provide an intact chromosome. "To replicate one DNA double helix in one cell you have to cut off a 5' flap so that you don't have one base pair too many or one base pair too few, and you have to do this accurately with 50 million Okazaki primers in each cell cycle," Tainer said. "It has always been a mystery as to how FEN1 can precisely cut this flap so efficiently and so rapidly. It's an amazing, efficient molecular machine for precisely cutting DNA."

To determine what FEN1 looked like in action, Arvai led the difficult but ultimately successful effort to grow crystals of the human FEN1 protein bound to DNA. The team then used X-ray crystallography to determine the atomic structure of the complex. Using Lawrence Berkeley National Laboratory's Advanced Light Source beamline, called SIBYLS, the scientists solved three different crystal structures.

The end result was a highly detailed and accurate model showing the structures of DNA before and after being cut by FEN1.

Earlier crystal structures suggested that FEN1 first grabs onto the flap of the 5' single stranded DNA, slides down to the joint where DNA is duplicated, and cuts and patches the primer there. But the new study found that, in fact, FEN1 binds, bends, frays, and then cuts the DNA.

"It binds duplex DNA, bends it into a single-stranded DNA right at the flap, flips out two base pairs, and cuts between them," said Tainer. "This gives FEN1 very precise control—a sophistication we had not expected."

Clues to cancer control

Researchers know that mutations in FEN1 can predispose humans to cancer growth because errors in flap removal can create unstable DNA that promotes cell growth and division. And studies in mice have shown that when one of two inherited FEN1 genes are knocked out, the mice are predisposed to cancer development if their DNA is damaged.

While other DNA repair systems can help compensate for FEN1 mistakes, or for missing FEN1 activity, "you need a lot of FEN1 for DNA repair and replication to work properly," Tainer said.

This suggests that, in tumors already missing one set of repair proteins, selectively inhibiting the function of FEN1 in rapidly replicating cells may prove to be an effective anti-cancer therapy. "The Achilles heel of cancer cells is defective DNA repair pathways," said Tainer, "because that makes them more sensitive to traditional therapies, such as chemotherapy and radiation. If cancer can't repair the damage these therapies do to tumors, they will die."

This is the paradox of DNA repair: while a defect in DNA repair can cause cancer, knocking out a number of backup repair systems may make tumors vulnerable to anti-cancer therapies.

"My hope is that our finding of how FEN1 works mechanistically might provide a foundation for a next-generation cancer drug," said Tainer. "We need to cut as many lifelines as possible in cancer cells in order to provide an effective treatment."

The study was supported by grants from the National Institutes of Health and the Biotechnology and Biological Sciences Research Council (BBSRC) in the United Kingdom.

First authors of the paper, "Human Flap Endonuclease Structures, DNA Double-Base Flipping, and a Unified Understanding of the FEN1 Superfamily," are Susan E. Tsutakawa and Scott Classen of Lawrence Berkeley National Laboratory and Brian R. Chapados and Arvai of Scripps Research. In addition to Tainer, Tsutakawa, Classen, Chapados, and Arvai, authors are: L. David Finger currently at the University of Sheffield; Grant Guenther of Scripps Research; Christopher G Tomlinson, Peter Thompson, and Jane A. Grasby of the University of Sheffield; Altaf H. Sarker and Priscilla K. Cooper of Lawrence Berkeley National Laboratory; Binghui Shen of City of Hope National Medical Center and Beckman Research Institute and Zhejiang University (China).

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu .

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>