Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Suggests Breakthrough in Controlling T Cell Activation

14.05.2014

The discovery of a crucial mechanism that controls the activation of T cells, a blood cell whose primary job is to fight infection in the body, may enable the development of new drugs to treat autoimmune disease, transplant rejection, and similar disorders in which T cells play a major role. The finding, "T Cell Receptor Signals to NF-kB Are Transmitted by a Cytosolic p62-Bcl10-Malt1-IKK Signalosome," was published in the May 13 issue of Science Signaling.

A team of Uniformed Services University of the Health Sciences (USU) researchers led by Dr. Brian Schaefer, Associate Professor in USU’s Department of Microbiology and Immunology, has demonstrated that the “POLKADOTS signalosome” (named for its dot-like appearance in cells) activates a protein called “NF-kappaB” in T cells. A signalosome is a cluster of proteins that works together inside a cell to control the activity of other proteins. NF-kappaB is a protein that turns on many different T cell functions, including those that contribute to autoimmunity and rejection of transplants.

Dr. Schaefer’s team, including lead author, Dr. Suman Paul, had previously shown that the POLKADOTS signalosome, in addition to activating this protein, also limits how much NF-kappaB is turned on. Because the POLKADOTS signalosome is a major point of control for NF-kappaB activation, it may be an attractive target for the design of new drugs to block or regulate T cell functions.

Normally, T cells play a key role in maintaining health, by helping to eliminate invading disease-causing bacteria and viruses. However, in some individuals, T cells begin to react against tissues in the body, causing autoimmunity. Also, when a patient receives an organ transplant, T cells will react to that organ and cause transplant rejection, if T cell functions are not successfully blocked. There are currently only a small number of drugs available to treat autoimmunity and transplant rejection, and these drugs do not work for all patients.

Inhibiting NF-kappaB activation has long been recognized as a potentially useful strategy for blocking the T cell responses that cause autoimmunity and transplant rejection. However, because NF-kappaB is necessary for a wide variety of important processes throughout the body, directly targeting this protein would lead to many undesired and harmful side effects. Importantly, Dr. Schaefer’s group predicts that drugs that block the activity of the POLKADOTS signalosome would inhibit NF-kappaB only in T cells. This is because the POLKADOTS signalosome appears to be present only in T cells. If successfully produced, drugs that act on the POLKADOTS signalosome may be a powerful new therapy for the treatment of many different autoimmune diseases and transplant rejection.

This work was supported by grants from the U.S. NIH (Al057481), the Center for Neuroscience and Regenerative Medicine, and pre-doctoral fellowships from the American Heart Association (10PRE3150039) and the Henry M. Jackson Foundation for the Advancement of Military Medicine.

About USU
The Uniformed Services University of the Health Sciences, founded by an act of Congress in 1972, is the nation’s federal health sciences university and the academic heart of the Military Health System. USU students are primarily active duty uniformed officers in the Army, Navy, Air Force and Public Health Service who receive specialized education in tropical and infectious diseases, TBI and PTSD, disaster response and humanitarian assistance, global health, and acute trauma care. A large percentage of the university’s more than 5,000 physician and nearly 730 advanced practice nursing alumni are supporting operations around the world, offering their leadership and expertise. USU also has graduate programs in biomedical sciences and public health committed to excellence in research, and in oral biology. The University's research program covers a wide range of clinical and other topics important to both the military and public health. For more information about USU and its programs, visit www.usuhs.edu.

Sharon Willis | newswise
Further information:
http://www.usuhs.edu

Further reports about: Breakthrough Cell Controlling Health Medicine PTSD USU activation activity autoimmunity diseases drugs inhibit proteins rejection transplant

More articles from Life Sciences:

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

nachricht Sun protection for plants - Plant substances can protect plants against harmful UV radiation
22.08.2016 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

 
Latest News

New Ideas for the Shipping Industry

24.08.2016 | Event News

Lehigh engineer discovers a high-speed nano-avalanche

24.08.2016 | Physics and Astronomy

Streamlining accelerated computing for industry

24.08.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>