Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Suggests Breakthrough in Controlling T Cell Activation

14.05.2014

The discovery of a crucial mechanism that controls the activation of T cells, a blood cell whose primary job is to fight infection in the body, may enable the development of new drugs to treat autoimmune disease, transplant rejection, and similar disorders in which T cells play a major role. The finding, "T Cell Receptor Signals to NF-kB Are Transmitted by a Cytosolic p62-Bcl10-Malt1-IKK Signalosome," was published in the May 13 issue of Science Signaling.

A team of Uniformed Services University of the Health Sciences (USU) researchers led by Dr. Brian Schaefer, Associate Professor in USU’s Department of Microbiology and Immunology, has demonstrated that the “POLKADOTS signalosome” (named for its dot-like appearance in cells) activates a protein called “NF-kappaB” in T cells. A signalosome is a cluster of proteins that works together inside a cell to control the activity of other proteins. NF-kappaB is a protein that turns on many different T cell functions, including those that contribute to autoimmunity and rejection of transplants.

Dr. Schaefer’s team, including lead author, Dr. Suman Paul, had previously shown that the POLKADOTS signalosome, in addition to activating this protein, also limits how much NF-kappaB is turned on. Because the POLKADOTS signalosome is a major point of control for NF-kappaB activation, it may be an attractive target for the design of new drugs to block or regulate T cell functions.

Normally, T cells play a key role in maintaining health, by helping to eliminate invading disease-causing bacteria and viruses. However, in some individuals, T cells begin to react against tissues in the body, causing autoimmunity. Also, when a patient receives an organ transplant, T cells will react to that organ and cause transplant rejection, if T cell functions are not successfully blocked. There are currently only a small number of drugs available to treat autoimmunity and transplant rejection, and these drugs do not work for all patients.

Inhibiting NF-kappaB activation has long been recognized as a potentially useful strategy for blocking the T cell responses that cause autoimmunity and transplant rejection. However, because NF-kappaB is necessary for a wide variety of important processes throughout the body, directly targeting this protein would lead to many undesired and harmful side effects. Importantly, Dr. Schaefer’s group predicts that drugs that block the activity of the POLKADOTS signalosome would inhibit NF-kappaB only in T cells. This is because the POLKADOTS signalosome appears to be present only in T cells. If successfully produced, drugs that act on the POLKADOTS signalosome may be a powerful new therapy for the treatment of many different autoimmune diseases and transplant rejection.

This work was supported by grants from the U.S. NIH (Al057481), the Center for Neuroscience and Regenerative Medicine, and pre-doctoral fellowships from the American Heart Association (10PRE3150039) and the Henry M. Jackson Foundation for the Advancement of Military Medicine.

About USU
The Uniformed Services University of the Health Sciences, founded by an act of Congress in 1972, is the nation’s federal health sciences university and the academic heart of the Military Health System. USU students are primarily active duty uniformed officers in the Army, Navy, Air Force and Public Health Service who receive specialized education in tropical and infectious diseases, TBI and PTSD, disaster response and humanitarian assistance, global health, and acute trauma care. A large percentage of the university’s more than 5,000 physician and nearly 730 advanced practice nursing alumni are supporting operations around the world, offering their leadership and expertise. USU also has graduate programs in biomedical sciences and public health committed to excellence in research, and in oral biology. The University's research program covers a wide range of clinical and other topics important to both the military and public health. For more information about USU and its programs, visit www.usuhs.edu.

Sharon Willis | newswise
Further information:
http://www.usuhs.edu

Further reports about: Breakthrough Cell Controlling Health Medicine PTSD USU activation activity autoimmunity diseases drugs inhibit proteins rejection transplant

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>