Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides strongest clues to date for causes of schizophrenia

26.08.2013
A new genome-wide association study (GWAS) estimates the number of different places in the human genome that are involved in schizophrenia.

In particular, the study identifies 22 locations, including 13 that are newly discovered, that are believed to play a role in causing schizophrenia.

"If finding the causes of schizophrenia is like solving a jigsaw puzzle, then these new results give us the corners and some of the pieces on the edges," said study lead author Patrick F. Sullivan, MD. "We've debated this for a century, and we are now zeroing in on answers."

"This study gives us the clearest picture to date of two different pathways that might be going wrong in people with schizophrenia," Sullivan said. "Now we need to concentrate our research very urgently on these two pathways in our quest to understand what causes this disabling mental illness."

Sullivan is a professor in the departments of Genetics and Psychiatry and director of the Center for Psychiatric Genomics at the University of North Carolina School of Medicine. The new study was published online Sunday, Aug. 25, 2013 by the journal Nature Genetics.

The results are based on a multi-stage analysis that began with a Swedish national sample of 5,001 schizophrenia cases and 6,243 controls, followed by a meta analysis of previous GWAS studies, and finally by replication of single nucleotide polymorphisms (SNPs) in 168 genomic regions in independent samples. The total number of people in the study was more than 59,000.

One of the two pathways identified by the study, Sullivan said, is a calcium channel pathway. This pathway includes the genes CACNA1C and CACNB2, whose proteins touch each other as part of an important process in nerve cells. The other is the "micro-RNA 137" pathway. This pathway includes its namesake gene, MIR137 – which is a known regulator of neuronal development – and at least a dozen other genes regulated by MIR137.

"What's really exciting about this is that now we can use standard, off-the-shelf genomic technologies to help us fill in the missing pieces," Sullivan said. "We now have a clear and obvious path to getting a fairly complete understanding of the genetic part of schizophrenia. That wouldn't have been possible five years ago."

Collaborators in the study include co-authors from the Karolinska Institutet in Stockholm, Sweden, the Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard, and the Mt. Sinai School of Medicine in New York.

Funding for the study included grants from the National Institutes of Mental Health (R01 MH077139), the Stanley Center for Psychiatric Research, the Sylvan Herman Foundation, the Karolinska Institutet, and the Swedish Research Council.

Tom Hughes | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>