Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how young genes become essential for life

07.06.2013
Researchers from UConn and other institutions in the U.S. and abroad have shown how a relatively young gene can acquire a new function and become essential to an organism's life.

Using a combination of techniques, including phylogenetics, molecular biology, and video microscopy, the scientists show that a novel essential gene in fruit flies, born via the process of gene duplication, is only 15 million years old and yet has acquired, in a stepwise fashion, a new job so important that the flies can't live without it. The study is published in the June 6 edition of Science.


This is imagery of cells dividing, recorded from video microscopy. The image on the left depicts normal cell division in a fruit fly cell. The cell on the right has had the Umbrea gene removed, and has failed to divide normally, resulting in cell death.

Credit: Photos courtesy Barbara Mellone

"The majority of these genes are not going to acquire essential functions" of genes that, like the one they studied, have been duplicated, says Barbara Mellone, assistant professor of molecular and cell biology in UConn's College of Liberal Arts and Sciences. "But the interaction network is completely rewired for this gene."

Mellone and her colleagues at the University of Washington, the Fred Hutchinson Cancer Research Center in Seattle, and the University of Munich traced the evolutionary steps by which a gene from the well-known fruit fly Drosophila melanogaster, known as Umbrea, acquired its essential role. The gene is vital to chromosome segregation, the process of splitting genetic material when cells divide to generate more cells, tissues, and organisms.

"The genus Drosophila offers an unprecedented system in which to study gene evolution because of the detailed evolutionary and genomic data available," says Mellone. "Learning about how new genes acquire new functions is crucial to understanding how whole genomes undergo functional innovation, which is what is needed for new traits to appear in populations that natural selection can act upon."

What puzzled the scientists is that Umbrea plays the role of strengthening the connections between chromosomes, making sure that chromosome segregation happens correctly. And although it is also present in other species of fruit fly, it's not essential in all of them. How then could a gene that has only been around for a fraction of this species' history have acquired such an essential role?

To understand this paradox, the researchers used gene sequencing to understand the gene's history and captured video of cells with Umbrea removed dividing under a microscope in Mellone's laboratory. Their methods showed that after its birth, Umbrea was lost in some of the species, but in one species, Drosophila melanogaster, cells without it failed to segregate chromosomes correctly, confirming its critical role.

But their results also showed that several stepwise changes led to Umbrea's current-day time in the limelight: it lost its previous, nonessential function; the network of proteins it interacts with was completely rewired, and it acquired new, "tail" domains on the ends of its sequence that allowed it to relocate to the centromere, a structure present on all chromosomes in all species, necessary for genome segregation during cell division.

"This gene emerged and wasn't going either way, toward or away from essential function," says Mellone. "Then something happened elsewhere to help make it essential."

The researchers argue that although most duplicated genes either become non-functional or are simply lost, keeping some of them around might benefit cells in the long run.

"Centromere proteins experience rapid evolution in many organisms, including humans, in a constant 'arms race' that exists to maintain the equal segregation of genetic traits," says Mellone.

So if the genes involved in genome partitioning are evolving so fast, then perhaps it's a good idea to keep other, nonfunctional genes around – those that can acquire new essential functions when necessary.

The scientists suggest that this could change the way scientists think about other biological processes that may require recurrent genetic innovation to adapt to new challenges.

Christine Buckley | EurekAlert!
Further information:
http://www.uconn.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>