Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Shows Potential for Using Algae

Pharmaceutical companies could substantially reduce the expense of costly treatments for cancer and other diseases produced from mammalian or bacterial cells by growing these human therapeutic proteins in algae—rapidly growing aquatic plant cells that have recently gained attention for their ability to produce biofuels.

That’s the conclusion of a study, published online this week in Plant Biotechnology Journal, which sought to determine whether seven diverse human therapeutic proteins could be produced in Chlamydomonas reinhardtii, a green alga used widely in biology laboratories as a genetic model organism, much like the fruit fly Drosophila and the bacterium E. coli.

“What surprised us was that of the seven genes chosen, four expressed proteins at levels sufficient for commercial production,” said Stephen Mayfield, a professor of biology at the University of California, San Diego who headed the study, which involved scientists at The Scripps Research Institute, San Diego biofuel company Sapphire Energy and ProtElix, a protein engineering company in Hayward, CA.

The scientists reported in their paper that all of the algal-produced proteins in their study showed biological activity comparable to the same proteins produced by traditional commercial techniques. And because algae cells can be grown cheaply and quickly, doubling in number every 12 hours, they noted that algae could be superior to current biological systems for the production of many human therapeutic proteins.

“Currently, human therapeutic proteins are primarily produced from either bacteria or mammalian cell culture,” they said. “Complex mammalian proteins and monoclonal antibodies are primarily produced by the culture of transgeneic mammalian cells, while simpler proteins are generally produced by E. coli.”

“Due to high capital and media costs, and the inherent complexity of mammalian cell culture, proteins produced by mammalian cell culture are very expensive,” they added. “Bacterial production is generally more economical in terms of media components, but bacteria are often inefficient at producing properly folded complex proteins, requiring a denaturation and renaturation step that adds significant costs to bacterial protein production.”

The scientists said the percentage of human proteins produced in their algal cultures that were properly folded in three dimensions was comparable to the fraction produced by mammalian cell cultures and much better than that produced by bacterial systems. And because algae generate their energy from sunlight and have relatively simple nutrient needs, they said the costs for using them at large scale to commercially produce human proteins should be much lower than for mammalian cell culture, which require expensive fermentation facilities.

To conduct their study, the scientists picked seven proteins that were either currently being used as standard treatments for diseases or are now undergoing human clinical trials. They include human interferon â1, which is used to treat Multiple Sclerosis and costs patients from $1,600 to $2,000 for a one month supply; human erythropoietin or EPO, used to increase red blood production in patients undergoing chemotherapy; and human proinsulin, a hormone with a multi-billion dollar market used to treat Type 1 diabetes. Two other proteins were human vascular endothelial growth factor or VEGF, used to treat patients suffering from pulmonary emphysema, and high moblility group protein B1 (HMGB1), which activates immune cells and is being investigated for its potential to enhance other cancer therapies. The remaining two proteins were domains 10 and 14 of human fibronectin, which are being investigated for their ability to mimic certain kinds of antibodies.

Mayfield and his colleagues at The Scripps Research Institute demonstrated two years ago that they could produce a mammalian serum amyloid protein from algae and, last year, demonstrated success producing a human antibody. Both of these proteins had biological activities similar to the real proteins from mammalian cells.

“That was the proof of concept,” said Mayfield. “It showed us that the system works—that we could produce complex mammalian proteins in algae. What we did in this next study was to say, ‘Let’s take seven diverse human therapeutic proteins and see if we can express them in algae and report the good and the bad.’”

The scientists found that in algae they were able to produce VEGF, HMGB1 and domain 14 of human fibronectin at levels above one percent of total soluble protein, levels sufficient for easy purification. Domain 10 of human fibronectin could also be produced from algae at these levels when fused to the protein M-SAA, which they had previously used to increase the accumulation of other proteins. Human proinsulin could be produced by algae, but only at lower levels, the study showed, while human interferon â1 and EPO were not produced by algae.

“What our results show is that algae are a robust platform for the production of human therapeutic proteins,” said Mayfield. “While not every protein can be produced in algae, a good fraction can, just like in any other system. You can get expression of about 25 percent in bacteria and about 40 to 50 percent in mammalian cells, so we’re in the same ball park as these other systems.”

What makes algae particularly attractive compared to bacterial and mammalian systems, the scientists say, is its ability to produce proteins cheaply and at very large scale. With algae currently being produced at about $3 per kilogram at commercial scale, the researchers estimate that making recombinant protein would cost about 60 cents per gram prior to purification.

“This is about the same cost estimates for the least expensive protein expression systems presently available, and considerably cheaper than mammalian cell culture,” they said in their paper. With expected improvements in the ability to express proteins in algae, “and the continued reduction in algal biomass cost associated with the large scale efforts to use algae for biofuel production, we anticipate at least a ten-fold reduction in the costs over the next few years, which should make algal protein production the least expensive platform available. This reduced cost of goods, coupled with an ability to rapidly scale production in inexpensive bioreactors, suggests that algae may become an economically superior platform for therapeutic protein production in the future.”

In a separate, but related effort, Mayfield and his colleagues are using various species of algae to investigate ways of generating renewable forms of transportation fuel from algae that could eventually be competitive with the cost of gasoline.

Other researchers involved in the therapeutic proteins study were Beth Rasala and Michal Jager of UCSD; Machiko Muto of TSRI; Mike Mendez, Philip Lee, Rosa Cardoso and Craig Behnke of Sapphire Energy; and Peter Kirk and Roberto Creo of ProtElix. Grants and other financial support from the National Institutes of Health, Sapphire Energy and the San Diego Foundation supported the study.

Media Contact:

Kim McDonald (858) 534-7572,
Stephen Mayfield (858) 822-7743,

Kim McDonald | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>