Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how plants sort and eliminate genes over millennia

10.03.2011
Hybrid plants with multiple genome copies show evidence of preferential treatment of the genes from one ancient parent over the genes of the other parent, even to the point where some of the unfavored genes eventually are deleted.

Brian Dilkes, an assistant professor of genetics at Purdue University, worked with a team of scientists at the University of California Davis and University of Southern California to study the genome of Arabidopsis suecica, a hybrid species with four chromosome sets formed tens of thousands of years ago from a cross between Arabidopsis arenosa and Arabidopsis thaliana, a plant commonly used in laboratories for genetic research. Dilkes said the findings, published in the journal Genome Biology and featured as an editor's choice article in the journal Science, give a glimpse into the evolutionary forces and ultimate fates of genes contributed by the two parents to a hybrid

"There often is no visible signature of these genes when we look at the plants with a microscope, but we can still observe those genes in the genome sequence," Dilkes said. "Moreover, the ability to make crosses between Arabidopsis thaliana and Arabidopsis arenosa gives us the opportunity to compare laboratory-derived plants that were generated yesterday with naturally occurring species from the wild and compare the two kinds of species hybrids. This is essentially allowing us an opportunity to 'replay the evolutionary tape,' in the words of Stephen J. Gould."

The researchers compared the genomes and gene expression among Arabidopsis suecica plants that have evolved over tens of thousands of years to similar species of hybrids made in the lab from fresh crosses.

When the contribution of genes from each parent was compared, they were not equal. One parent's genes were preferentially expressed at higher levels. In the cases where that happened, it was three times more likely that the preferentially expressed genes came from Arabidopsis arenosa.

The team also found that gene pairs that are co-expressed in similar tissues are preferentially expressed from the same parent. Even in the rare cases when an Arabidopsis thaliana gene was more abundantly expressed in the hybrid, co-expressed genes would also be preferentially expressed from the Arabidopsis thaliana copy.

"Our findings suggest an additional network dependence, where genes fine-tuned to work together within either parental species prior to hybridization are more likely to be expressed together in the hybrid. This, in turn, ensures that these genes acquired from one parental species are kept together and are not lost in the genome over time," said Peter Chang, a graduate student at USC and lead author on the paper. "Plants have had a remarkable ability to adapt to different conditions throughout Earth's history, and we are just beginning to understand some of ways this is done."

Previous work has shown that plant genomes with historical duplications from tens of millions of years ago have lost one of the two copies in large blocks along the chromosome, consistent with the preferential loss of one parent's contribution.

Dilkes said the retained genes may have a role in the plants' fitness but genes that weren't expressed would be deleted from the genome.

"The genome is moving toward a two-copy organization, a diploid, by preferentially deleting one parent. When others have looked at genomes that have ancient duplications they see large blocks of duplications in which one block has a large number of genes and the other has a sparse gene content," Dilkes said. "Perhaps a cause of this pattern in the organization of genomes is preferential expression, and, all other things being equal, the gene that is more abundantly expressed will carry a greater proportion of the fitness load for any essential function."

The National Science Foundation funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Brian Dilkes, 765-494-2584, bdilkes@purdue.edu

Peter Chang, 213-821-4000, Peter.Chang@usc.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>