Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows that mutations in 1 gene cause many cancers

30.03.2010
An important gene that normally protects the body against cancer can itself cause a variety of cancers depending on the specific mutation that damages it, according to a new study by investigators at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James).

The study examined mutations in a gene called PTEN. People who inherit a mutated copy of this gene have Cowden syndrome, a condition that carries a high risk of cancer in a number of organs, including the breast, thyroid and ovary. In addition, PTEN is frequently mutated in normal body cells leading to prostate, lung and pancreatic cancers.

Why people with Cowden syndrome develop different cancers, or cancers that are more severe in some than in others, is unknown, though the cause is often attributed to the natural genetic differences that exist between individuals.

This animal study, however, linked specific mutations in the gene to distinct kinds of cancer in organs targeted by the syndrome.

"We showed that the mutations themselves play a critical role in driving the cancers that occur in certain organs in people with Cowden syndrome," says principal investigator Gustavo Leone, associate professor of molecular virology, immunology and medical genetics at the OSUCCC-James.

"Together, our findings demonstrate that specific inherited PTEN mutations have a strong influence in the variable predisposition to cancer of patients with Cowden syndrome."

The findings, published in the March 16 issue of the Proceedings of the National Academy of Sciences of the United States of America, suggest that testing for specific PTEN mutations might predict the kind and severity of cancer that will develop in people with the syndrome.

Furthermore, because PTEN is the second most commonly mutated gene in human cancer overall, the same mutations might predict severity in sporadic tumors, as well.

"Mutations in this gene also play a role in developmental disabilities and perhaps in autism, so this mouse model might be useful for studies in those conditions, as well," says co-principal investigator Michael Ostrowski, professor and chair of molecular and cellular biochemistry at Ohio State.

For this study, Leone, Ostrowski and their colleagues developed three strains of genetically identical mice, each of which had one of three specific PTEN mutations found in people with Cowden syndrome. This left each strain with a different version of the PTEN protein. The study showed that each version functioned in a different way, and each influenced cancer development to a different degree.

Mutation 1 disabled the protein altogether and often caused cancer in the animals, while mutation 2 produced a protein that was more active than the normal PTEN protein, and sometimes caused cancer. Mutation 3 altered the protein in ways that should have made it more cancer-causing but also made it more fragile, so less of the protein was present to cause problems. This mutation sometimes didn't cause cancer at all.

Using a database of more than 400 patients with Cowden syndrome, the researchers found that patients with these same mutations have cancer in the corresponding organs as the mice. The mice also showed equivalent gender differences in tumor development, with females developing more thyroid tumors, and males developing more adrenal gland and stomach tumors.

The researchers are now investigating why patients may experience differences in cancer severity even when they have the same mutation.

Funding from the National Cancer Institute, the American Cancer Society, the Susan Komen Foundation, the Evelyn Simmers Foundation, and the U.S. Department of Defense supported this research.

Leone is the recipient of the Pew Charitable Trusts Scholar Award and the Leukemia and Lymphoma Society Scholar Award.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>