Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows that mutations in 1 gene cause many cancers

30.03.2010
An important gene that normally protects the body against cancer can itself cause a variety of cancers depending on the specific mutation that damages it, according to a new study by investigators at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James).

The study examined mutations in a gene called PTEN. People who inherit a mutated copy of this gene have Cowden syndrome, a condition that carries a high risk of cancer in a number of organs, including the breast, thyroid and ovary. In addition, PTEN is frequently mutated in normal body cells leading to prostate, lung and pancreatic cancers.

Why people with Cowden syndrome develop different cancers, or cancers that are more severe in some than in others, is unknown, though the cause is often attributed to the natural genetic differences that exist between individuals.

This animal study, however, linked specific mutations in the gene to distinct kinds of cancer in organs targeted by the syndrome.

"We showed that the mutations themselves play a critical role in driving the cancers that occur in certain organs in people with Cowden syndrome," says principal investigator Gustavo Leone, associate professor of molecular virology, immunology and medical genetics at the OSUCCC-James.

"Together, our findings demonstrate that specific inherited PTEN mutations have a strong influence in the variable predisposition to cancer of patients with Cowden syndrome."

The findings, published in the March 16 issue of the Proceedings of the National Academy of Sciences of the United States of America, suggest that testing for specific PTEN mutations might predict the kind and severity of cancer that will develop in people with the syndrome.

Furthermore, because PTEN is the second most commonly mutated gene in human cancer overall, the same mutations might predict severity in sporadic tumors, as well.

"Mutations in this gene also play a role in developmental disabilities and perhaps in autism, so this mouse model might be useful for studies in those conditions, as well," says co-principal investigator Michael Ostrowski, professor and chair of molecular and cellular biochemistry at Ohio State.

For this study, Leone, Ostrowski and their colleagues developed three strains of genetically identical mice, each of which had one of three specific PTEN mutations found in people with Cowden syndrome. This left each strain with a different version of the PTEN protein. The study showed that each version functioned in a different way, and each influenced cancer development to a different degree.

Mutation 1 disabled the protein altogether and often caused cancer in the animals, while mutation 2 produced a protein that was more active than the normal PTEN protein, and sometimes caused cancer. Mutation 3 altered the protein in ways that should have made it more cancer-causing but also made it more fragile, so less of the protein was present to cause problems. This mutation sometimes didn't cause cancer at all.

Using a database of more than 400 patients with Cowden syndrome, the researchers found that patients with these same mutations have cancer in the corresponding organs as the mice. The mice also showed equivalent gender differences in tumor development, with females developing more thyroid tumors, and males developing more adrenal gland and stomach tumors.

The researchers are now investigating why patients may experience differences in cancer severity even when they have the same mutation.

Funding from the National Cancer Institute, the American Cancer Society, the Susan Komen Foundation, the Evelyn Simmers Foundation, and the U.S. Department of Defense supported this research.

Leone is the recipient of the Pew Charitable Trusts Scholar Award and the Leukemia and Lymphoma Society Scholar Award.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>