Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how disruption of spectrin-actin network causes lens cells in the eye to lose shape

15.09.2009
A network of proteins underlying the plasma membrane keeps epithelial cells in shape and maintains their orderly hexagonal packing in the mouse lens, say Nowak et al. The study will appear in the September 21, 2009 issue of the Journal of Cell Biology (online September 14).

Spectrin, F-actin, and associated proteins form a meshwork that supports and shapes the plasma membrane of red blood cells. A similar network underlies the membranes of other cell types, including lens fiber cells: elongated epithelial cells that encircle vertebrate lenses in concentric layers, appearing in cross section as tightly packed hexagons. Actin filaments within this membrane skeleton are stabilized by their association with members of the tropomyosin and tropomodulin families of actin-binding proteins.

In mice lacking tropomodulin1, gamma-tropomyosin was also lost from the membrane skeleton of lens fiber cells. F-actin and spectrin remained associated with the cell membrane, but gaps appeared in the usually continuous protein network, suggesting that the two actin-binding proteins stabilize a subset of actin filaments required to link the network together. Scanning electron microscopy revealed that fiber cell membrane protrusions, which interlock with neighboring cells, were distorted and irregularly arranged in the absence of tropomodulin1. And although the fiber cells appeared hexagonal when first forming at the lens' equator, they often became misshapen and disorganized as they matured and moved toward the lens' center.

Senior author Velia Fowler thinks that disruption of the spectrin–actin network alters the adhesive interactions between neighboring cells, causing their shapes and packing to become disordered in response to the mechanical stresses associated with lens growth and eye movements.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org.

Nowak, R.B., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200905065.

Rita Sullivan | EurekAlert!
Further information:
http://www.rupress.org

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>