Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows how disruption of spectrin-actin network causes lens cells in the eye to lose shape

A network of proteins underlying the plasma membrane keeps epithelial cells in shape and maintains their orderly hexagonal packing in the mouse lens, say Nowak et al. The study will appear in the September 21, 2009 issue of the Journal of Cell Biology (online September 14).

Spectrin, F-actin, and associated proteins form a meshwork that supports and shapes the plasma membrane of red blood cells. A similar network underlies the membranes of other cell types, including lens fiber cells: elongated epithelial cells that encircle vertebrate lenses in concentric layers, appearing in cross section as tightly packed hexagons. Actin filaments within this membrane skeleton are stabilized by their association with members of the tropomyosin and tropomodulin families of actin-binding proteins.

In mice lacking tropomodulin1, gamma-tropomyosin was also lost from the membrane skeleton of lens fiber cells. F-actin and spectrin remained associated with the cell membrane, but gaps appeared in the usually continuous protein network, suggesting that the two actin-binding proteins stabilize a subset of actin filaments required to link the network together. Scanning electron microscopy revealed that fiber cell membrane protrusions, which interlock with neighboring cells, were distorted and irregularly arranged in the absence of tropomodulin1. And although the fiber cells appeared hexagonal when first forming at the lens' equator, they often became misshapen and disorganized as they matured and moved toward the lens' center.

Senior author Velia Fowler thinks that disruption of the spectrin–actin network alters the adhesive interactions between neighboring cells, causing their shapes and packing to become disordered in response to the mechanical stresses associated with lens growth and eye movements.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit

Nowak, R.B., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200905065.

Rita Sullivan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>