Study shows how disruption of spectrin-actin network causes lens cells in the eye to lose shape

Spectrin, F-actin, and associated proteins form a meshwork that supports and shapes the plasma membrane of red blood cells. A similar network underlies the membranes of other cell types, including lens fiber cells: elongated epithelial cells that encircle vertebrate lenses in concentric layers, appearing in cross section as tightly packed hexagons. Actin filaments within this membrane skeleton are stabilized by their association with members of the tropomyosin and tropomodulin families of actin-binding proteins.

In mice lacking tropomodulin1, gamma-tropomyosin was also lost from the membrane skeleton of lens fiber cells. F-actin and spectrin remained associated with the cell membrane, but gaps appeared in the usually continuous protein network, suggesting that the two actin-binding proteins stabilize a subset of actin filaments required to link the network together. Scanning electron microscopy revealed that fiber cell membrane protrusions, which interlock with neighboring cells, were distorted and irregularly arranged in the absence of tropomodulin1. And although the fiber cells appeared hexagonal when first forming at the lens' equator, they often became misshapen and disorganized as they matured and moved toward the lens' center.

Senior author Velia Fowler thinks that disruption of the spectrin–actin network alters the adhesive interactions between neighboring cells, causing their shapes and packing to become disordered in response to the mechanical stresses associated with lens growth and eye movements.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org.

Nowak, R.B., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200905065.

Media Contact

Rita Sullivan EurekAlert!

More Information:

http://www.rupress.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors