Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how aging impairs immune response

18.07.2012
Researchers at Albert Einstein College of Medicine of Yeshiva University have uncovered one of the mechanisms by which aging may compromise the ability of the immune system to fight infections and respond to vaccines.

The study, conducted in aging mice, shows that administering antioxidants may help reverse this loss of immune function. The findings were published online this month in the journal Cell Reports.

"Aging is known to affect immune function, a phenomenon known as immunosenescence, but how this happens is not clear," said study leader Laura Santambrogio, M.D., Ph.D. , associate professor of pathology and of microbiology & immunology at Einstein. "Our study has uncovered several ways in which aging can worsen the body's overall ability to mount an effective immune response."

All cells generate chemicals called free radicals as a normal part of metabolism. These highly reactive, unstable molecules can readily damage proteins, lipids and other cellular components through oxidation (the reaction between oxygen and substances it comes in contact with). Cells keep "oxidative stress" in check by producing several enzymes that are scavengers of free radicals. But in aging, increased production of free radicals coupled with cells' decreased production of antioxidant enzymes cause a buildup of damaged proteins and other molecules that can be toxic to cells.

The current study is the first to examine whether age-related oxidative stress compromises the function of a type of immune cell called dendritic cells. "Dendritic cells are known as the 'sentinels of the immune system' and alert the rest of the immune system to the presence of microbial invaders," explained Dr. Santambrogio. "When you are exposed to viruses or bacteria, these cells engulf the pathogens and present them to the immune system, saying in effect, 'There's an infection going on, and here is the culprit—go get it.'"

Dr. Santambrogio, in collaboration with Einstein colleagues Fernando Macian-Juan, M.D., Ph.D. , and Ana Maria Cuervo, M.D., Ph.D. , isolated dendritic cells from aging mice and found that oxidation-damaged proteins had accumulated in those cells and had caused harmful effects. For example, oxidatively modified proteins hampered the function of endosomes, the cell's organelle where pathogens are inactivated.

When the mice were injected with a potent antioxidant in the abdominal cavity daily for two weeks, some of the effects of oxidative stress were reversed. This finding has implications for designing vaccines or therapies for humans, especially the elderly, whose weakened immune systems increase their susceptibility to infections and cancer, and reduces vaccine effectiveness. "Many elderly people respond very poorly to vaccination, so perhaps a cycle of therapy with antioxidants before vaccination might improve their immune response to vaccines," Dr. Santambrogio noted.

The paper is titled "Age-related Oxidative Stress Compromises Endosomal Proteostasis." In addition to Dr. Santambrogio, Dr. Macian-Juan, associate professor of pathology, and Dr. Cuervo, professor of developmental and molecular biology, of anatomy and structural biology and of medicine , other Einstein contributors were Elvira Cannizzo PhD candidate, Cristina Clement, Ph.D.; Kateryna Morozova, Ph.D.; Rut Valdor, Ph.D.; Susmita Kaushik PhD, Larissa Almeida PhD candidate, Carlo Follo PhD, and Ranjit Sahu, Ph.D.

The study was supported by several grants from the National Institutes of Health (NIH), including from the National Institute of Allergy and Infectious Diseases (AI48833), the National Institute on Aging (AG031782), the National Institute of Diabetes and Digestive Diseases (DK041918), and a NIH Fogarty Geographic Infectious Diseases Training Grant (D43TW007129).

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation’s premier centers for research, medical education and clinical investigation. During the 2011-2012 academic year, Einstein is home to 724 M.D.; students, 248 Ph.D;. students, 117 students in the combined M.D./Ph.D.; program, and 368 postdoctoral research fellows;. The College of Medicine has 2,522 full time faculty members located on the main campus and at its clinical affiliates;. In 2011, Einstein received nearly $170 million in awards from the NIH. This includes the funding of major research centers; at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center) – Einstein’s founding hospital, and five other hospital systems in the Bronx, Manhattan, Long Island and Brooklyn, Einstein runs one of the largest post-graduate medical training programs in the United States, offering approximately 155 residency programs to more than 2,200 physicians in training. For more information, please visit www.einstein.yu.edu; and follow us on Twitter @EinsteinMed.

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>