Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on role of stem cells in children's brain tumor

11.01.2010
New research from scientists at Queen Mary, University of London shows how the most common type of children's brain cancer can arise from stem cells.

Scientists know relatively little about medulloblastomas or why some cases respond better to treatments than others.

The new research, published today in Oncogene*, shows that medulloblastomas can grow from a type of brain stem cell and that these cancers are a distinct form of the disease which may require a completely different approach to treatment.

Medulloblastomas account for one in five of all children's brain tumours. They are most common in children between the ages of three and eight but they can also affect young adults.

Silvia Marino, Professor of Neuropathology at Queen Mary, University of London, led the study. She said: "This type of brain tumour can pose a great challenge to doctors. In some children, treatment works well but in others the cancer is aggressive and far harder to treat.

"As scientists we've been trying to understand how these cancers which look the same can behave so differently.

"This study is a major advance for us because it shows for the first time that some of these tumours develop from endogenous stem cells.

"This is important for two reasons. First, it could help us to tell which cancers will respond well to treatment and which will need a more aggressive therapy. Second, this new understanding could help us to find much-needed new drugs for the disease."

Previous research has shown that human brains contain a small number of stem cells – called neural stem cells - which enable the brain to repair itself to some degree. Professor Marino and her team studied equivalent cells taken from mouse brains.

They found that two particular genes called Rb and p53, which are already known to play a role in cancer, could malfunction in these cells and allow the cells to grow uncontrollably. They also found that in mice, these cells turned into medulloblastomas.

The researchers then looked more closely at the genetic makeup of these tumours and found a particular pattern which they compared with tumours taken from patients with medulloblastomas. They found that patients whose tumours also had this genetic pattern were those with the worst survival chances.

The researchers believe that their findings are a crucial first step in understanding the most aggressive form of this disease. They can now begin to look for new ways to tackle the disease in a more effective and possibly less toxic way.

*Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas, Sutter R, et al, Oncogene, 2010, 1-12

This work was supported by grants from Cancer Research UK, Ali's Dream and Charlie's Challenge Charities as well as St Bartholomew's Charitable Foundation.

Sian Halkyard | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>