Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on role of stem cells in children's brain tumor

11.01.2010
New research from scientists at Queen Mary, University of London shows how the most common type of children's brain cancer can arise from stem cells.

Scientists know relatively little about medulloblastomas or why some cases respond better to treatments than others.

The new research, published today in Oncogene*, shows that medulloblastomas can grow from a type of brain stem cell and that these cancers are a distinct form of the disease which may require a completely different approach to treatment.

Medulloblastomas account for one in five of all children's brain tumours. They are most common in children between the ages of three and eight but they can also affect young adults.

Silvia Marino, Professor of Neuropathology at Queen Mary, University of London, led the study. She said: "This type of brain tumour can pose a great challenge to doctors. In some children, treatment works well but in others the cancer is aggressive and far harder to treat.

"As scientists we've been trying to understand how these cancers which look the same can behave so differently.

"This study is a major advance for us because it shows for the first time that some of these tumours develop from endogenous stem cells.

"This is important for two reasons. First, it could help us to tell which cancers will respond well to treatment and which will need a more aggressive therapy. Second, this new understanding could help us to find much-needed new drugs for the disease."

Previous research has shown that human brains contain a small number of stem cells – called neural stem cells - which enable the brain to repair itself to some degree. Professor Marino and her team studied equivalent cells taken from mouse brains.

They found that two particular genes called Rb and p53, which are already known to play a role in cancer, could malfunction in these cells and allow the cells to grow uncontrollably. They also found that in mice, these cells turned into medulloblastomas.

The researchers then looked more closely at the genetic makeup of these tumours and found a particular pattern which they compared with tumours taken from patients with medulloblastomas. They found that patients whose tumours also had this genetic pattern were those with the worst survival chances.

The researchers believe that their findings are a crucial first step in understanding the most aggressive form of this disease. They can now begin to look for new ways to tackle the disease in a more effective and possibly less toxic way.

*Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas, Sutter R, et al, Oncogene, 2010, 1-12

This work was supported by grants from Cancer Research UK, Ali's Dream and Charlie's Challenge Charities as well as St Bartholomew's Charitable Foundation.

Sian Halkyard | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>