Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on role of stem cells in children's brain tumor

11.01.2010
New research from scientists at Queen Mary, University of London shows how the most common type of children's brain cancer can arise from stem cells.

Scientists know relatively little about medulloblastomas or why some cases respond better to treatments than others.

The new research, published today in Oncogene*, shows that medulloblastomas can grow from a type of brain stem cell and that these cancers are a distinct form of the disease which may require a completely different approach to treatment.

Medulloblastomas account for one in five of all children's brain tumours. They are most common in children between the ages of three and eight but they can also affect young adults.

Silvia Marino, Professor of Neuropathology at Queen Mary, University of London, led the study. She said: "This type of brain tumour can pose a great challenge to doctors. In some children, treatment works well but in others the cancer is aggressive and far harder to treat.

"As scientists we've been trying to understand how these cancers which look the same can behave so differently.

"This study is a major advance for us because it shows for the first time that some of these tumours develop from endogenous stem cells.

"This is important for two reasons. First, it could help us to tell which cancers will respond well to treatment and which will need a more aggressive therapy. Second, this new understanding could help us to find much-needed new drugs for the disease."

Previous research has shown that human brains contain a small number of stem cells – called neural stem cells - which enable the brain to repair itself to some degree. Professor Marino and her team studied equivalent cells taken from mouse brains.

They found that two particular genes called Rb and p53, which are already known to play a role in cancer, could malfunction in these cells and allow the cells to grow uncontrollably. They also found that in mice, these cells turned into medulloblastomas.

The researchers then looked more closely at the genetic makeup of these tumours and found a particular pattern which they compared with tumours taken from patients with medulloblastomas. They found that patients whose tumours also had this genetic pattern were those with the worst survival chances.

The researchers believe that their findings are a crucial first step in understanding the most aggressive form of this disease. They can now begin to look for new ways to tackle the disease in a more effective and possibly less toxic way.

*Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas, Sutter R, et al, Oncogene, 2010, 1-12

This work was supported by grants from Cancer Research UK, Ali's Dream and Charlie's Challenge Charities as well as St Bartholomew's Charitable Foundation.

Sian Halkyard | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>