Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Reveals Surprising Lack of Genetic Diversity in the Most Widely Used Human Embryonic Stem Cell Lines

18.12.2009
The most widely used human embryonic stem cell lines lack genetic diversity, a finding that raises social justice questions that must be addressed to ensure that all sectors of society benefit from stem cell advances, according to a University of Michigan research team.

In the first published study of its kind, the U-M team analyzed 47 embryonic stem cell lines, including most of the lines commonly used by stem cell researchers. The scientists determined the genetic ancestry of each line and found that most were derived from donors of northern and western European ancestry.

Several of the lines are of Middle Eastern or southern European ancestry. Two of the lines are of East Asian origin. None of the lines were derived from individuals of recent African ancestry, from Pacific Islanders, or from populations indigenous to the Americas.

In addition, U-M researchers identified several instances in which more than one cell line came from the same embryo donors, further reducing the overall genetic diversity of the most widely available lines.

"Embryonic stem cell research has the potential to change the future of medicine," said Sean Morrison, director of the U-M Center for Stem Cell Biology and one of the study leaders. "But there's a lack of diversity among today's most commonly used human embryonic stem cell lines, which highlights an important social justice issue."

"We expected Europeans to be overrepresented, but we were surprised by how little diversity there is," he said.

For the study, Morrison teamed up with two colleagues at the U-M Life Sciences Institute: stem cell scientist Jack Mosher and population geneticist Noah Rosenberg. Their findings are scheduled to be published online Wednesday in the New England Journal of Medicine.

A fundamental principle of medical research is that new therapies are tested on patients that mirror the diversity in society, because certain groups may respond to medications and treatments differently. By evaluating new therapies in diverse patients, researchers are more likely to detect the different effects these therapies might have.

Embryonic stem cell lines are being used to develop new cellular therapies for spinal cord injuries and various diseases, to screen for new drugs and to better understand inherited diseases. It's crucial that diverse lines are available for this research to ensure that all patients benefit from the results, Morrison said.

"If that's not done, we run the risk of leaving certain groups in our society behind," said Morrison, who is a Howard Hughes Medical Institute investigator at U-M.

The U-M report comes as Michigan researchers launch new projects made possible by a recent state constitutional amendment allowing researchers in the state to derive new human embryonic stem cell lines using approaches already used in the rest of the country.

The Michigan initiatives are getting underway as stem cell scientists across the nation respond to sweeping policy changes issued by the Obama administration. On Dec. 2, the U.S. National Institutes of Health announced it had approved 13 new human embryonic stem cell lines for use by federally funded researchers.

Since that announcement, 40 lines have been approved for federal funding, including 22 lines that were part of the U-M genotyping study. Estimates of the total number of human embryonic stem cell lines in the world range up to 700.

"While there are likely other lines out there that come from populations not represented in our study, those are not the lines that are most widely distributed and employed in stem cell research," said Rosenberg, a research associate professor at LSI.

In Michigan, U-M researchers announced on Dec. 8 that they received approval from the Medical School's Institutional Review Board and the university's Human Pluripotent Stem Cell Research Oversight Committee to begin accepting donated embryos that will be used to derive the university's first human embryonic stem cell lines. It is the first U-M project made possible by Proposal 2, the state constitutional amendment approved by Michigan voters in November 2008, easing restrictions on human embryonic stem cell research in the state.

The derivation project will be conducted by the university's new Consortium for Stem Cell Therapies, which includes researchers from across campus, as well as collaborators at Michigan State University and Wayne State University. Project scientists expect to begin accepting the first donated embryos early next year and to achieve their first embryonic stem cell line by mid-2010. The work must abide by the restrictions imposed by the Michigan Constitution and federal regulations.

A top priority for the consortium is to derive lines that carry the genes responsible for inherited diseases. Morrison, a member of the consortium's scientific advisory board, said the University of Michigan "will also make it a priority to derive new embryonic stem cell lines from underrepresented groups, including African-Americans."

But progress could be undermined by a package of bills now before the Michigan Legislature, Morrison said. The bills seek to impose new restrictions on embryonic stem cell research that could block much of the research approved by voters under Proposal 2, he said.

In the U-M study, Mosher extracted DNA from embryonic stem cells and identified the pattern of genetic variation at nearly 500,000 sites within the genome, a process called genotyping. Rosenberg then compared the stem-cell genotypes to databases containing genetic information from 2,001 individuals of known ancestry.

"If we find that a stem cell line is very similar genetically to people from a certain population that has previously been studied, then that's good evidence that the embryonic stem cell line was derived from donors belonging to that population, or a closely related population," Rosenberg said.

Mosher noted that the U-M Life Sciences Institute was created to bring together researchers with different sets of expertise to collaborate on problems they couldn't solve individually.

"This is a perfect example of that type of cross-disciplinary collaboration," said Mosher, an assistant research scientist at LSI. "By combining two seemingly disparate scientific approaches, we were able to make a discovery that adds important new insights."

In addition to Mosher, Morrison and Rosenberg, the paper's authors are Trevor Pemberton, Kristina Harter, Chaolong Wang and Erkan Buzbas of the University of Michigan, Petr Dvorak of Masaryk University in the Czech Republic, and Carlos Simon of Valencia University in Spain.

The study was funded by the Alfred P. Sloan Foundation and donors to the U-M Center for Stem Cell Biology, especially the Jeffrey and Susan Liss Fund for the Life Sciences.

Related links:

University of Michigan stem cell research site: http://umich.edu/stemcell
U-M Center for Stem Cell Biology: http://www.lsi.umich.edu/facultyresearch/centers/stemcellbiology
Information for potential embryo donors: http://stemcellresearch.umich.edu
U-M Life Sciences Institute: http://lsi.umich.edu

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>